

Prepared by the Merrimack Valley Planning Commission

This document was prepared in cooperation with the Massachusetts Department of Transportation and the U.S. Department of Transportation. (under Contract # 108056 with MassDOT) The views and opinions of the Merrimack Valley Planning Commission expressed herein do not necessarily state or reflect those of the Massachusetts Department of Transportation or the U.S. Department of Transportation. Page intentionally left blank.

Table of Contents

Appendices.		1
Appendix A	Other Regional Priority Bridge Projects	2
Appendix B	Other Regional Priority Roadway Projects	3
Appendix C	Transportation Evaluation Criteria Summary	7
Appendix D	Sample Project Evaluation Worksheet	13
Appendix E	Greenhouse Gas (GHG) Tracking	19
	FFYs 2021 to 2025 Projects GHG Tracking Summary	25
Appendix F	Completed Highway and Transit Projects GHG Summary	81
Appendix G	List of Acronyms	
Appendix H	Key to Maps Showing Locations of Transportation Projects	95

Page intentionally left blank.

Appendices

Appendix A and B: Other Regional Priorities

Appendix A Other Regional Priority Bridge Projects

(No Funding Available)

Bridges That Do Not Fit into Fiscally Constrained Targets, and therefore have No Funding Available in Any Year (By Town):

<u>ID</u>	Location	Project Description	Estimated Total Project Cost
602322	Ames.	Amesbury - Bridge Replacement, A-07-008, Oak Street Over the B&M Railroad (Abandoned Line)	\$1,000,000
	And.	Andover - Rehab. Bridge (A-09-001) Route 28 (North Main Street) Over the Shawsheen Riv- er	
605418	And.	Andover - Bridge Preservation, A-09-028, Chandler Road over I-93	\$3,450,000
604839	Law.	Lawrence – Bridge Replacement, L-04-027, Lowell Street over B&M Railroad	\$4,473,000
	Law.	Lawrence - Bridge Rehabilitation, L-04-042, South Union Connector over South Street	
	Nbypt.	Newburyport - Bridge (N-11-002) State Route 113 (High Street) Over Railroad	
	Nbypt.	Newburyport - Bridge (N-11-014) State Route 1A (High Street) over US 1	
607115	Nbypt.	Newburyport - Bridge Repairs, N-11-015, Washington St. over US 1	\$1,400,000

Appendix B Other Regional Priority Roadway Projects

(No Funding Available)

Roadway Projects That Do Not Fit into Fiscally Constrained Targets, and therefore have No Funding Available in Any Year (By Town)

ID	Location	Project Description	Estimated Total Project Cost
608336	Andover	Andover – Reconstruction on Route 133 (Lowell Street), from Lovejoy Road to Route 28 (North Main Street) TEC = 11.00	\$7,245,000
606721	Boxford	Boxford - Reconstruction of Route 133 (Washington Street) from North Andover town line to Main Street TEC = 5.60	\$5,172,164
	Boxford	Boxford Reconstruction of Route 97 from Georgetown to Topsfield (2 miles)	\$3,785,000
607540	Boxford	Boxford - Border to Boston Trail TEC = 3.32	\$4,174,500
602843	Georgetown	Georgetown – Reconstruction on Route 97 (W. Main Street) from Moulton Street to Groveland T.L. TEC = 6.63	\$6,662,599
	Haverhill	Haverhill -Intersection Improvements Route 110 and Elliott Street	
	Haverhill	Haverhill – Widen Route 97 (Broadway) from Computer Drive to Research Drive	

Appendix B Other Regional Priority Roadway Projects (Continued)

(No Funding Available)

Roadway Projects That Do Not Fit into Fiscally Constrained Targets, and therefore have No Funding Available in Any Year (By Town):

ID	Location	Project Description	Estimated Total Project Cost
608788	Haverhill	Haverhill – Roadway Reconstruction on North Avenue, from Main Street (Route 125) to Plais- tow, NH TEC = 8.25	\$17,875,000
608721	Haverhill	Haverhill – Corridor Improvements on Water Street (Route 97/113), from Ginty Boule- vard/Mill Street to Lincoln Boulevard/Riverside Avenue TEC = 8.18	\$8,050,000
602339	Haverhill	Haverhill-Historic Waterfront Walkway Phase II (Construction)	\$3,110,184
	Lawrence/ North Andover	Lawrence - North Andover - Reconstruction of Route 114 from I-495 in Lawrence to Rt. 125 (Andover St.) in North Andover TEC = 13.05	
	Newbury- port	Newburyport -Route 1 Rotary Reconfiguration	
608029	Newbury- port	Newburyport - Intersection Improvements Route 1 at Merrimac Street TEC = 7.67	\$2,400,000

Appendix B Other Regional Priority Roadway Projects (Continued)

(No Funding Available)

Roadway Projects That Do Not Fit into Fiscally Constrained Targets, and therefore have No Funding Available in Any Year (By Town):

<u>ID</u>	Location	Project Description	Estimated Total Project Cost
	North Andover	North Andover – Reconstruction of Mass. Ave. and Sidewalks (from Osgood St. to I-495)	
	North Andover	North Andover - Signals and turn lanes at Mass Ave. and I-495 NB and SB Ramps	
607710	Salisbury	Salisbury – Resurfacing and related work Route 1A	\$2,300,000

Page intentionally left blank.

	1	-			-							
Programmed for Fund- ing in Draft TIP	ID#	Project Description	Project Cost in 1000s	AADT	Linear Lane Miles	Condition	Mobility	Safety & Security	Community Effects & Support	Land Use & Economic Development	Environmental Effects	Total TEC Score (2021- 2025)
No		Lawrence –North Andover - Reconstruction of Rt. 114 from I-495 to Rt. 125 (Ando- ver St.)		30,000	5.6	3.00	3.00	3.00	1.80	1.75	0.50	13.05
Yes	608095	North Andover – Recon- struction of Rt. 114 from Rt. 125 (Andover St.) to Stop & Shop	\$25,057	30,000	4.8	2.00	2.75	2.67	1.40	1.75	0.75	11.32
Yes	608930	Lawrence – LMRC Rail Trail	\$14,895	NA	NA	1.00	1.75	2.00	3.00	2.50	1.00	11.25
No	608336	Andover – Rt. 133 reconst. Lovejoy Road to Shawsheen Square (inc. Shawsheen Square)	\$7,245	12,773	4.4	2.00	2.75	2.00	1.00	1.75	1.50	11.00

Programmed for Fund- ing in Draft TIP	ID#	Project Description	Project Cost in 1000s	AADT	Linear Lane Miles	Condition	Mobility	Safety & Security	Community Effects & Support	Land Use & Economic Development	Environmental Effects	Total TEC Score (2021- 2025)
Yes	609509	Lawrence – Intersection Improvements at Merrimack Street and South Broadway (Route 28)	\$1,549	NA	NA	2.50	2.25	2.00	1.20	2.25	0.50	10.70
Yes	602202	Salisbury – Reconstruction of Route 1 (Lafayette Road)	\$6,331	12,147	4.8	2.00	2.00	2.33	0.60	1.5	0.5	8.93
Yes	608761	Haverhill - Intersection Im- provements at Rt. 110 / Rt. 108	\$1,980	NA	NA	1.50	1.75	1.67	1.20	1.75	1.00	8.87
No	608788	Haverhill - Reconstruction of North Ave. from Main St. to NH stateline	\$17,875	13,172	4.0	2.50	1.75	1.00	2.00	0.00	1.00	8.25

Programmed for Fund- ing in Draft TIP	ID#	Project Description	Project Cost in 1000s	AADT	Linear Lane Miles	Condition	Mobility	Safety & Security	Community Effects & Support	Land Use & Economic Development	Environmental Effects	Total TEC Score (2021- 2025)
No	608721	Haverhill - Corridor Im- provements on Water St. from Ginty Blvd / Mill St. to Lincoln Ave./ Riverside Ave.	\$8,050	20,200	2.0	1.50	1.75	1.33	1.60	1.25	0.75	8.18
No	608029	Newburyport – Intersection Improvements Rt. 1 at Mer- rimac St.	\$2,400	24,850	NA	2.00	0.50	2.67	1.00	1.25	0.25	7.67
No	602843	Georgetown – Reconstruc- tion on Route 97 (W. Main) from Moulton St. to Groveland TL	\$7,239	15,486	2.2	1.50	1.25	1.33	0.80	1.50	1.00	7.38
In 2020 TIP	608027	Haverhill – Bradford Rail Trail extension	\$1,766	NA	NA	0.50	1.50	1.00	2.40	1.25	0.50	7.15

Programmed for Fund- ing in Draft TIP	ID#	Project Description	Project Cost in 1000s	AADT	Linear Lane Miles	Condition	Mobility	Safety & Security	Community Effects & Support	Land Use & Economic Development	Environmental Effects	Total TEC Score (2021- 2025)
Yes	609251	Lawrence – Intersection Im- provements at South Broad- way (Route 28) and Mount Vernon St.	\$1,014	NA	NA	2.00	1.00	1.67	1.60	0.50	0.25	7.02
Yes	610663	Newburyport – Riverfront Clipper City Rail Trail	\$1,901	NA	NA	1.50	1.25	1.00	1.00	1.75	0.50	7.00
Yes	610658	Methuen – Intersection Im- provements at Riverside Drive and Burnham Road	\$930	NA	NA	1.50	1.25	1.67	1.60	0.25	0.25	6.52
No	606721	Boxford - Route 133 (North Andover TL to Main St.)	\$5,172	6,149	2.9	1.50	1.00	1.00	0.60	0.50	1.00	5.60
Yes	607542	Georgetown – Newbury – Border to Boston Trail (North- ern Georgetown to Byfield Section)	\$5,076	NA	NA	0.50	1.25	0.67	0.80	1.50	0.50	5.22

Programmed for Fund- ing in Draft TIP	ID#	Project Description	Project Cost in 1000s	AADT	Linear Lane Miles	Condition	Mobility	Safety & Security	Community Effects & Support	Land Use & Economic Development	Environmental Effects	Total TEC Score (2021- 2025)
Yes	607541	Georgetown – Boxford – Bor- der to Boston Trail, from Georgetown Road to West Main Street (Route 97)	\$2,423	NA	NA	0.50	1.25	0.67	0.80	1.25	0.75	5.22
Yes	608298	Groveland - Community Trail	\$1,985	NA	NA	0.50	1.25	0.67	1.20	1.00	0.25	4.87
Yes	609392	Rowley – Safety Improve- ments at Route 1, Central and Glen Streets	\$2,041	NA	NA	0.50	1.00	1.33	1.00	0.25	0.00	4.08
No	607540	Boxford – section of Border to Boston Trail	\$4,175	NA	NA	0.50	1.00	0.67	0.40	0.50	0.25	3.32

Appendix D Sample Project Evaluation Worksheet

Sample Project Evaluation Worksheet

Merrimack Valley Planning Commission and MassDOT Evaluation Criteria

Project: Andover - Reconstruct Rt. 133 from Lovejoy Rd to Rt. 28 Project Cost: \$7,245,000 AADT: 12,773 Distance: 2.2 Li

Project #: 608336 Linear Lane Miles: 4.4

Condition		Score	Additional Comments
A.	Magnitude of pavement condition improvement.	2	PNF indicates longitudinal & lateral pavement cracking, utility patch failure, shoving and rutting of pavement along route.
В.	Magnitude of improvement of other infrastructure.		Current shoulder width 0' to 2', project to increase shoulder width to 4' or 5' for bikes and > safety for pe- destrians, upgrade signals, drainage improvements
	Condition Average	2.0	

Mobility	Score	Additional Comments
A. Effect on magnitude and duration of congestion.	3	Adding left turn lanes at intersection at MA-133/ Lovejoy /Greenwood. Also Rt 133/ Rt 28 improvements
B. Effect on travel time and connectivity / access.	2	Widening shoulder, realigning Rt 133/ Lovejoy and add- ing left turn lanes.
C. Effect on other modes using the facility.	3	Widening shoulder for bicycles, sidewalks on both sides.
D. Effect on regional and local traffic.	3	Widening shoulder, adding left turn lanes. Additional connector I-495 to I-93. NHS roadway.
Mobility Average	2.75	

Sample Project Evaluation Worksheet (Cont.)

Project: Andover - Reconstruct Rt. 133 from Lovejoy Rd to Rt. 28

Project #: 608336

Safety and Security	Score	Additional Comments			
A. Effect on crash rate compared to State average.	3	PNF Rt 133/ Lovejoy / Greenwood has a crash rate of .94, District 4 average is .78 and the arterial between two signalized intersections is 3.8, Avg. is 2.12. Have had 1 pedestrian with injuries and 1 bicycle crash.			
B. Effect on bicycle and pedestrian safety.	2	Widening shoulder for bicycles and provides greater safety for pedestrians.			
C. Effect on transportation security and evacuation routes/	1	Is an NHS roadway. Is an evacuation route.			
Safety and Security Average	2.00				

Community Effects and Support	Score	Additional Comments
A. Residential effects: ROW, noise, aesthetics, cut through traffic, and other.		For the most part all within ROW. General appearance and less noise from better pavement conditions.
 B. Public, local government, legislative, and regional support. 	2	
C. Effect on service to minority or low-income neighbor- hoods. (Title VI and EJ)	0	Not Title VI or EJ area.
D. Other impacts / benefits to minority or low-income neighborhoods. (Title VI and EJ).	0	Not Title VI or EJ area.
E. Effect on development and redevelopment of housing	1	
Community Effects and Support Average	1.00	

Sample Project Evaluation Worksheet (Cont.) Project: Andover - Reconstruct Rt. 133 from Lovejoy Rd to Rt. 28

Project #: 608336

Land Use and Economic Development	Score	Additional Comments
 A. Business effects; ROW, noise, traffic, parking, freight access, other. 	2	Improve access to existing businesses.
 B. Sustainable development effects. Consistent with MVPGS. 	2	Access to MVPGS Rolling Green Regional PDA. Improves transportation choice (walk/bike) for area res- idents.
C. Consistent with regional land-use and economic devel- opment plans and PGS.	2	Access to MVPGS Rolling Green Regional PDA. Improves transportation choice (walk/bike) for area res- idents.
D. Effect on job creation.	1	Should provide better access to Brickstone Square State PDA.
Land Use and Economic Development Average	1.75	

Sample Project Evaluation Worksheet (Cont.) Project: Andover - Reconstruct Rt. 133 from Lovejoy Rd to Rt. 28

Project #: 608336

Environmental Effects	Score	Additional Comments
 A. Air quality / Climate effects. GHG Impact Description – Assumed Nominal Decrease in Emissions from Other Improvements 	2	Adding bike lanes and sidewalks. Reducing delays at intersections.
B. Water quality/supply effects; wetlands effects.	1	There will be deep sump catch basins
C. Historic and cultural resources effects.	3	Shawsheen Village Historic District
D. Effect on wildlife habitat and endangered species.	0	Not endangered species habitat area.
Environmental Effects Average	1.5	
Overall Project TEC score	11.00	

Page intentionally left blank.

Appendix E Greenhouse Gas (GHG) Tracking

2021 - 2025 Transportation Improvement Program Greenhouse Gas Tracking

This section summarizes the greenhouse gas (GHG) impacts that are anticipated to result from the projects that are included in this FFY 2021 – 2025 Transportation Improvement Program (TIP). It includes a summary of the state laws and policies that call for reducing greenhouse gas in order to mitigate global climate change, actions that respond to these state laws and policies, the role of regional planning and TIP development in reducing GHG emission and tracking these reductions, and the projected GHG emission impacts from the projects programmed in the TIP.

State Policy Context

The Global Warming Solutions Act (GWSA), which was signed into law in August 2008, makes Massachusetts a leader in setting aggressive and enforceable GHG reduction targets, and implementing policies and initiatives to achieve these targets. In keeping with the law, on December 29, 2010 the Massachusetts Executive Office of Energy and Environmental Affairs (EOEEA), in consultation with other state agencies and the public, released the Massachusetts *Clean Energy and Climate Plan for 2020*. In December 2014 the Department of Environmental Protection (DEP) issued new regulations that require Metropolitan Planning Organizations to quantify impacts from project investments, track progress towards reductions, and consider impacts in the prioritization of project investments. The targets for overall statewide GHG emissions are:

- By 2020: 25 percent reduction below statewide 1990 GHG emission levels, and
- By 2050: 80 percent reduction below statewide 1990 GHG emission levels

The Role of Metropolitan Planning Organizations

The Commonwealth's MPOs are integrally involved in supporting the GHG reductions mandated under the GWSA. The MPOs are most directly involved in helping to achieve the GHG emissions reductions through the promotion of healthy transportation modes through prioritizing and programming an appropriate balance of roadway, transit, bicycle and pedestrian investments – and assisting smart growth development patterns through the creation of a balanced multi-modal transportation system. This is realized through the transportation goals and policies espoused in the Regional Transportation Plans (RTPs), the major projects planned in the RTPs, and the mix of new transportation projects that are programmed and implemented through the TIPs. GHG tracking and evaluation processes enable the MPOs to identify the anticipated GHG impacts of planned and programmed projects, and also to use GHG impacts as a criterion in prioritizing transportation projects.

Project-Level GHG Tracking and Evaluation in TIPs

It is also important to monitor and evaluate the GHG impacts of the transportation projects that are programmed in the MPOs' TIPs. The TIPs include both the larger, regionally-significant projects from the RTPs, which are reported in the Statewide GHG report, as well as smaller projects that are not included in the RTP but that may nevertheless have impacts on GHG emissions. The primary objective of this tracking is to enable the MPOs to evaluate expected GHG impacts of different projects and to use this information as a criterion for prioritizing and programming projects.

Calculation of GHG Impacts for TIP Projects

MassDOT has adopted spreadsheets used by MPOs to determine CMAQ eligibility and that also include CO₂ impacts. The data and analysis required for these calculations is available from functional design reports that are submitted for projects that would produce a measurable GHG impact.

Projects with Quantified Impacts

RTP Projects

Major capacity expansion projects are expected to have a significant impact on GHG emissions. These projects are included in each MPO's RTP and analyzed using either the statewide model or Boston MPO's regional model, which reflect GHG impacts. As a result, no independent TIP calculations are required.

Quantified Decrease in Emissions

For those projects that are expected to produce a measurable decrease in emissions, the approach for calculating these impacts is described below. These projects are categorized in the following manner:

- Quantified Decrease in Emissions from Traffic Operational Improvement -An intersection reconstruction or signalization project that is projected to reduce delay and congestion.
- Quantified Decrease in Emissions from Pedestrian and Bicycle Infrastructure - A shared-use path that enables increased walking and biking and decreased vehicle-miles traveled (VMT).
- Quantified Decrease in Emissions from New/Additional Transit Service A bus or shuttle service that enables increased transit ridership and decreased VMT.
- Quantified Decrease in Emissions from a Park and Ride Lot A park-andride lot that enables increased transit ridership/ increased ridesharing and decreased VMT.

Quantified Decrease in Emissions from Bus Replacement

A bus replacement that directly reduces GHG emissions generated by service.

- Quantified Decrease in Emissions from Complete Streets Improvements -Improvements to roadway networks that include the addition of bicycle and pedestrian accommodations where none were present before.
- Quantified Decrease in Emissions from Alternative Fuel Vehicle
 Procurements A vehicle procurement where alternative fuel/ advanced technology vehicles replace traditional gas or diesel vehicles.
- Quantified Decrease in Emissions from Anti-idling Strategies Implementation of policies such as limiting idling allowed, incorporationg antiidling technology into fleets and using LED lights on trucks for the purpose of illuminating worksites.
- Quantified Decrease in Emissions from Bike Share Projects A new bike share project or capacity added to existing project.
- Quantified Decrease in Emissions from Induced Travel Projects A project that changes roadway capacity.
- Quantified Decrease in Emissions from Speed Reduction Programs Programs that reduce speed to no less than 55 miles per hour.
- Quantified Decrease in Emissions from Transit Signal Priority Projects A project that applies this technology to a signal intersection or along a corridor that impacts bus service.
- Quantified Decrease in Emissions from Truck Stop Electrification Projects
 A new truck stop electrification project or capacity added to an existing project.
- Quantified Decrease in Emissions from Other Improvement

Quantified Increase in Emissions

Projects expected to produce a measurable increase in emissions.

Projects with No Assumed Impacts

No Assumed Impact/Negligible Impact on Emissions - Projects that do not change the capacity or use of a facility (e.g. roadway median barrier or retaining wall replacement, or bridge rehabilitation/replacement that restores the bridge to its previous condition) are assumed to have no/negligible GHG impact.

Qualitative Decrease in Emissions

Projects expected to produce a minor decrease in emissions that cannot be calculated with any precision. Examples of such projects include roadway repaving, signage improvement, ITS improvement, or transit marketing/customer experience improvement.

Qualitative Increase in Emissions

Projects expected to produce a minor increase in emissions that cannot be calculated with any precision.

Regional Greenhouse Gas Impact Summary Tables for FFYs 2021 – 2025 TIP

The following tables summarize the calculated quantitative and assumed qualitative impacts of the projects included in the regional FFYs 2021 – 2025 TIP by year.

Page intentionally left blank.

FFYs 2021 to 2025 Projects GHG Tracking Summary

Mass DOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO₂ Impact (kg/yr)	GHG Impact Description	Total Cost	Additional Information
608761	HAVERHILL- INTERSECTION RECONSTRUCTION ON ROUTE 108 (NEWTON ROAD) AT ROUTE 110 (KENOZA AVENUE AND AMESBURY ROAD)	\$1,980,067	Quantified	8,307	Quantified De- crease in Emis- sions from Traffic Operational Im- provement	\$1,980,067	
609251	LAWRENCE – INTERSECTION IMPROVEMENTS AT SOUTH BROADWAY (ROUTE 28) AND MOUNT VERNON STREET	\$1,013,739	Quantified	380,222	Quantified De- crease in Emis- sions from Traffic Operational Im- provement	\$1,013,739	

Mass DOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO2 Impact (kg/yr)	GHG Impact Description	Total Cost	Additional Information
S10777	MVRTA – FLEX TO FTA TO REPLACE YR 2009 BUSES WITH NEW BUSES DELIVERY 2022 (7 OF 9)	\$3,467,361	Quantified	20,049	Quantified Decrease in Emissions from Bus Replacement	\$3,467,361	
608298	GROVELAND- GROVELAND COMMUNITY TRAIL FROM MAIN STREET TO KING STREET	\$1,984,861	Quantified	2,710	Quantified Decrease in Emissions from Bi- cycle and Pedestrian Infrastructure	\$1,984,861	

2021 N	lerrimack Valley Re	gion MPO	TIP Highwa	ay Projec	ts GHG Trackin	g Summary	,
Mass DOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO2 Impact (kg/yr)	GHG Impact Description	Total Cost	Additional Information
610663	NEWBURYPORT – RIVERFRONT CLIPPER CITY RAIL TRAIL CONSTRUCTION	\$1,900,802	Qualitative		Qualitative De- crease in Emis- sions	\$1,900,802	GHG emis- sions had been includ- ed in quanti- fying New- buryport Clipper City Rail Trail Phase II Pro- ject # 606503 which has been com- pleted.
605306	HAVERHILL- BRIDGE REPLACEMENT, H-12- 039, I-495 (NB & SB) OVER MERRIMACK RIVER	\$15,305,880	Qualitative		No assumed im- pact/ negligible im- pact on emissions	\$108,833,832	AC Yr 4 of 6.

2022 N	2022 Merrimack Valley Region MPO TIP Highway Projects GHG Tracking Summary									
Mass DOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO2 Impact (kg/yr)	GHG Impact Description	Total Cost	Additional Information			
607541	GEORGETOWN- BOXFORD- BORDER TO BOSTON TRAIL, FROM GEORGETOWN ROAD TO WEST MAIN STREET (ROUTE 97)	\$2,520,436	Quantified	2,667	Quantified De- crease in Emis- sions from Bicycle and Pedestrian Infrastructure	\$2,520,436				
605306	HAVERHILL- BRIDGE REPLACEMENT, H-12- 039, I-495 (NB & SB) OVER MERRIMACK RIVER	\$18,203,683	Qualitative		No assumed im- pact/ negligible impact on emis- sions	\$108,833,832	AC Yr 5 of 6.			

2022 (0	2022 (Cont.) Merrimack Valley Region MPO TIP Highway Projects GHG Tracking Summary										
Mass DOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO₂ Impact (kg/yr)	GHG Impact Description	Total Cost	Additional Information				
609509	LAWRENCE – INTERSECTION IMPROVEMENTS AT MERRIMACK STREET AND SOUTH BROADWAY (ROUTE 28)	\$1,610,960	Quantified	52,372	Quantified De- crease in Emis- sions from Traffic Operational Im- provement	\$1,610,960					
610658	METHUEN – INTERSECTION IMPROVEMENTS AT RIVERSIDE DRIVE AND BURNHAM ROAD	\$967,200	Quantified	333,725	Quantified De- crease in Emis- sions from Traffic Operational Im- provement	\$967,200					
608494	NEWBURY- NEWBURYPORT- SALISBURY- RESURFACING AND RELATED WORK ON ROUTE 1	\$9,807,200	Qualitative		Qualitative De- crease in Emis- sions	\$9,807,200					

2023 N	2023 Merrimack Valley Region MPO TIP Highway Projects GHG Tracking Summary									
Mass DOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO2 Impact (kg/yr)	GHG Impact Description	Total Cost	Additional Information			
602202	SALISBURY- RECONSTRUCTION OF ROUTE 1 (LAFAYETTE ROAD)	\$6,837,284	Qualitative		Qualitative Decrease in Emissions	\$6,837,284				
608095	NORTH ANDOVER- CORRIDOR IMPROVEMENTS ON ROUTE 114, BETWEEN ROUTE 125 (ANDOVER STREET) & STOP & SHOP DRIVEWAY	\$4,401,056	Qualitative		RTP project included in the Statewide model.	\$27,061,794	AC Yr 1 of 4			
608930	LAWRENCE- LAWRENCE MANCHESTER RAIL CORRIDOR (LMRC) RAIL TRAIL	\$16,087,005	Quantified	175,927	Quantified Decrease in Emissions from Bicycle and Pedes- trian Infrastructure	\$16,087,005				

Mass DOT/ FTA Project ID	Cont.) Merrimack V MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO ₂ Im- pact (kg/yr)	GHG Impact Description	Total Cost	Additional Information
605306	HAVERHILL- BRIDGE REPLACEMENT, H-12- 039, I-495 (NB & SB) OVER MERRIMACK RIVER	\$12,994,233	Qualitative		No assumed impact/ negligible impact on emissions	\$108,833,832	AC Yr 6 of 6.
609466	HAVERHILL- BRIDGE REPLACEMENT, H-12- 040, I-495 (NB & SB) OVER MERRIMACK RIVER	\$22,901,531	Qualitative		No assumed impact/ negligible impact on emissions	\$99,783,090	AC Yr 1 of 3.

2024 N	lerrimack Valley Re	gion MPO	TIP Highwa	ay Proj	ects GHG Trackin	g Summary	,
Mass DOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO ₂ Im- pact (kg/yr)	GHG Impact Description	Total Cost	Additional Information
606522	ANDOVER- BRIDGE REHABILITATION, A- 09-036, I-495 OVER ST 28 (SB), A-09-037, I-495 OVER B&M AND MBTA, A-09-041, I-495 OVER ST 28 (NB)	\$15,056,661	Qualitative		No assumed impact/ negligible impact on emissions	\$131,458,071	AC Yr 1 of 5
607542	GEORGETOWN- NEWBURY- BORDER TO BOSTON TRAIL, (NORTHERN GEORGETOWN TO BYFIELD SECTION)	\$5,685,059	Quantified	15,682	Quantified Decrease in Emissions from Bicycle and Pedestrian Infra- structure	\$5,685,059	

2024 (0	Cont.) Merrimack Va	alley Regio	n MPO TI	P Highw	vay Projects GHG	Tracking Su	Immary
Mass DOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO2 Impact (kg/yr)	GHG Impact Description	Total Cost	Additional Information
608095	NORTH ANDOVER- CORRIDOR IMPROVEMENTS ON ROUTE 114, BETWEEN ROUTE 125 (ANDOVER STREET) & STOP & SHOP DRIVEWAY	\$11,385,638	Qualitative		RTP project included in the Statewide model.	\$27,061,794	AC Yr 2 of 4
609466	HAVERHILL- BRIDGE REPLACEMENT, H-12- 040, I-495 (NB & SB) OVER MERRIMACK RIVER	\$43,180,558	Qualitative		No assumed impact/ negligible impact on emissions	\$99,783,090	AC Yr 2 of 3.

2024 (2024 (Cont.) Merrimack Valley Region MPO TIP Highway Projects GHG Tracking Summary									
Mass DOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO ₂ Im- pact (kg/yr)	GHG Impact Description	Total Cost	Additional Information			
605304	HAVERHILL- BRIDGE REPLACEMENT, H-12- 007 & H-12-025, BRIDGE STREET (SR 125) OVER MERRIMACK RIVER AND THE ABANDONED B&M RR (PROPOSED BIKEWAY)	\$17,912,404	Qualitative		No assumed impact/ negligible impact on emissions	\$116,320,512	AC Yr 1 of 5.			

2025 N	lerrimack Valley Re	egion MPO	TIP Highwa	ay Proj	jects GHG Trackir	ng Summary	1
Mass DOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO ₂ Im- pact (kg/yr)	GHG Impact Description	Total Cost	Additional Information
608095	NORTH ANDOVER- CORRIDOR IMPROVEMENTS ON ROUTE 114, BETWEEN ROUTE 125 (ANDOVER STREET) & STOP & SHOP DRIVEWAY	\$11,119,839	Qualitative		RTP project included in the Statewide Mod- el.	\$27,061,794	AC Yr 3 of 4
609392	ROWLEY – SAFETY IMPROVEMENTS AT ROUTE 1, CENTRAL AND GLEN STREETS	\$2,368,068	Qualitative		Not enough infor- mation available to quantify.	\$2,368,068	
609466	HAVERHILL- BRIDGE REPLACEMENT, H-12- 040, I-495 (NB & SB) OVER MERRIMACK RIVER	\$33,701,001	Qualitative		No assumed impact/ negligible impact on emissions	\$99,783,090	AC Yr 3 of 3.

2025 (Cont.) Merrimack V	alley Regio	n MPO TIP	Highw	vay Projects GHG	Tracking Su	ummary
Mass DOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO2 Im- pact (kg/yr)	GHG Impact Description	Total Cost	Additional Information
605304	HAVERHILL- BRIDGE REPLACEMENT, H-12- 007 & H-12-025, BRIDGE STREET (SR 125) OVER MERRIMACK RIVER AND THE ABANDONED B&M RR (PROPOSED BIKEWAY)	\$27,949,092	Qualitative		No assumed impact/ negligible impact on emissions	\$116,320,512	AC Yr 2 of 5.
606522	ANDOVER- BRIDGE REHABILITATION, A- 09-036, I-495 OVER ST 28 (SB), A-09-037, I-495 OVER B&M AND MBTA, A-09-041, I-495 OVER ST 28 (NB)	\$20,997,351	Qualitative		No assumed impact/ negligible impact on emissions	\$131,458,071	AC Yr 2 of 5

2021 Merri	mack Valley Region T	ransit Proj	ects GHG	S		
MassDOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO2 Impact (kg/yr)	GHG Impact Description	Total Cost
RTD0008592	Preventive Maintenance	\$3,495,970	Qualitative		No assumed impact/ negligible impact on emissions	\$3,495,970
RTD0008593	Non-Fixed Route ADA Para Serv	\$1,741,065	Qualitative		No assumed impact/ negligible impact on emissions	\$1,741,065
RTD0008594	Short Range Transit Plan- ning	\$100,000	Qualitative		No assumed impact/ negligible impact on emissions	\$100,000
RTD0008595	Operating Assistance	\$1,116,240	Qualitative		No assumed impact/ negligible impact on emissions	\$1,116,240
RTD0008596	Replace 16 Model Yr 2015 vans with new	\$1,180,480	Quantified	33,208	Quantified Decrease in Emissions from Bus Replacement	\$1,180,480

MassDOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO ₂ Impact (kg/yr)	GHG Impact Description	Total Cost
RTD0007697	SGR Replace 1 model yr 2016 supervisory vehicle	\$47,900	Qualitative		No assumed impact/ negligible impact on emissions	\$47,900
RTD0009132	SGR Replace Security Cam- era System at McGovern Center	\$131,000	Qualitative		No assumed impact/ negligible impact on emissions	\$131,000
RTD0009131	Riverbank Stabilization Con- struction	\$1,750,330	Qualitative		No assumed impact/ negligible impact on emissions	\$1,750,330
TBD	Replace Model Yr 2009 Bus- es Delivery 2022 (2 of 9)	\$990,674	Quantified	5,728	Quantified Decrease in Emissions from Bus Replacement	\$990,674

2022 Merri	mack Valley Region T	ransit Proj	ects GHG	S		
MassDOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO2 Impact (kg/yr)	GHG Impact Description	Total Cost
RTD0008597	Preventive Maintenance	\$3,611,335	Qualitative		No assumed impact/ negligible impact on emissions	\$3,611,335
RTD0008598	Non-Fixed Route ADA Para Serv	\$1,801,630	Qualitative		No assumed impact/ negligible impact on emissions	\$1,801,630
RTD0008599	Short Range Transit Plan- ning	\$100,000	Qualitative		No assumed impact/ negligible impact on emissions	\$100,000
RTD0008600	Operating Assistance	\$1,289,890	Qualitative		No assumed impact/ negligible impact on emissions	\$1,289,890
RTD0008609	SGR Replace 2 model year 2016 supervisory vehicles	\$97,740	Qualitative		No assumed impact/ negligible impact on emissions	\$97,740

2023 Merri	mack Valley Region T	ransit Proj	ects GHG	S		
MassDOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO ₂ Impact (kg/yr)	GHG Impact Description	Total Cost
RTD0008603	Preventive Maintenance	\$3,730,510	Qualitative		No assumed impact/ negligible impact on emissions	\$3,730,510
RTD0008604	Operating Assistance	\$1,478,730	Qualitative		No assumed impact/ negligible impact on emissions	\$1,478,730
RTD0008605	Non-Fixed Route ADA Para Serv	\$1,861,090	Qualitative		No assumed impact/ negligible impact on emissions	\$1,861,090
RTD0008606	Replace 4 Model Yr 2011 buses delivery 2023	\$2,009,600	Qualitative		Not enough information to calculate	\$2,009,600
RTD0008607	Replace 6 model yr 2017 vans delivery 2023	\$469,620	Qualitative		Not enough information to calculate	\$469,620

2023 Merri	2023 Merrimack Valley Region Transit Projects GHGs (Cont.)									
MassDOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO ₂ Impact (kg/yr)	GHG Impact Description	Total Cost				
RTD0008608	Short Range Transit Plan- ning	\$100,000	Qualitative		No assumed impact/ negligible impact on emissions	\$100,000				
RTD0008960	SGR Replace 1 model yr 2017 supervisory vehicle	\$50,335	Qualitative		No assumed impact/ negligible impact on emissions	\$50,335				

2024 Merri	mack Valley Region T	ransit Proj	ects GHG	S		
MassDOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO2 Impact (kg/yr)	GHG Impact Description	Total Cost
RTD0008611	Preventive Maintenance	\$3,618,265	Qualitative		No assumed impact/ negligible impact on emissions	\$3,618,265
RTD0008613	Non-Fixed Route ADA Para Serv	\$1,805,255	Qualitative		No assumed impact/ negligible impact on emissions	\$1,805,255
RTD0008612	Operating Assistance	\$1,429,680	Qualitative		No assumed impact/ negligible impact on emissions	\$1,429,680
RTD0008614	Short Range Transit Plan- ning	\$100,000	Qualitative		No assumed impact/ negligible impact on emissions	\$100,000
RTD0008610	SGR Replace model year 2011 buses delivery 2024 (4 of 8)	\$2,098,970	Qualitative		Not enough information to calculate	\$2,098,970

2024 Merrimack Valley Region Transit Projects GHGs (Cont.)									
MassDOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO2 Impact (kg/yr)	GHG Impact Description	Total Cost			
RTD0008961	SGR Replace 1 model yr 2018 supervisory vehicle	\$51,845	Qualitative		No assumed impact/ negligible impact on emissions	\$51,845			

2025 Merri	mack Valley Region T	ransit Proj	ects GHG	S		
MassDOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO2 Impact (kg/yr)	GHG Impact Description	Total Cost
RTD0008963	Preventive Maintenance	\$3,690,630	Qualitative		No assumed impact/ negligible impact on emissions	\$3,690,630
RTD0008965	Non-Fixed Route ADA Para Serv	\$1,841,365	Qualitative		No assumed impact/ negligible impact on emissions	\$1,841,365
RTD0008964	Operating Assistance	\$1,458,270	Qualitative		No assumed impact/ negligible impact on emissions	\$1,458,270
RTD0008962	Short Range Transit Plan- ning	\$100,000	Qualitative		No assumed impact/ negligible impact on emissions	\$100,000
RTD0008615	SGR Replace model yr 2012 buses 4 of 8 delivery 2025	\$2,193,840	Qualitative		Not enough information to calculate	\$2,193,840

2025 Merrimack Valley Region Transit Projects GHGs (Cont.)										
MassDOT/ FTA Project ID	MassDOT/ FTA Project Description	Total Pro- grammed Funds	Pro- Analysis CO ₂ grammed Type Impac		GHG Impact Description	Total Cost				
RTD0008966	SGR Replace 1 model yr 2019 supervisory vehicle	\$52,880	Qualitative		No assumed impact/ negligible impact on emissions	\$52,880				

	<u>Georgetown - Boxfo</u>	ord Border-to-Boston Trail	<u>CMAQ Air Qua</u>	ality Workshe	<u>et</u>					
	CMAQ Air Quality A	nalysis Worksheet for Bicycle and Pedestria	n Project							
	FILL IN SHADED BC	DXES ONLY								
	TIP YEAR:	2022								
	MPO:	Merrimack Valley		Municipality:	Georgetown	, Boxford				
	Project:	# 607541 Georgetown-Boxford Border to B	oston Trail							
	Step 1: Calculate Estimated Reduction in Vehicle Miles Traveled (VMT):									
	If VMT reduction per year is known then go to Step 2B, if not proceed with Step 1 :									
Α.	Facility Length (L):			2.0	Miles					
В.	Service Area Radius	(R):		1.0	Miles	(Default = 1)				
C.	Service Area of Com	munity(ies) (SA) : L * 2R = SA		4	Sq. Miles					
D.	Total Land Area of Co	ommunity(ies) (T) :		36.5	Sq. Miles					
Ε.	Service Area % of Co	ommunity(ies) Land Area (LA): SA / T = LA		11.0%						
F.	Total Population of C	ommunity(ies) (TP) :		16,579	Persons					
G.	Population Served by	/ Facility (P) : LA * TP = P		1,817	Persons					
Н.	Total Number of Hous	seholds in Community(ies) (HH) :		5,828	HH					
I.	Number of Household	ds Served by Facility (HS) : LA * HH = HS		639	HH					
J.	Total Number of Wor	kers Residing in Community(ies) (W) :		8,647	Persons					
K.	Workers Per househo	old (WPHH) : W / HH = WPHH		1.48	Persons					
L.	Workers in Service A	rea (WSA) : HS * WPHH = WSA		948	Persons					
М.	Population Density of	f the Service area (PD): P / SA = PD		454 P	ersons Per So	. Mile				

Draft FFYs 2021 to 2025 MVMPO TIP Appendix April 2020

48

N.	If the bicycle and pedestrian commuter mode share is known, enter the percentage at the right. (BMS) 0.8% If not, use US Census - American Community Survey data to determine the mode share and enter the percentage. http://www.census.gov/programs-surveys/acs/guidance/estimates.html												
О.	Bike and Ped. Work Util	itarian Trips (BWT) : WSA * I	BMS = BWT	7 One-Wa	y Trips								
Ρ.	 P. Bike and Ped. Non-Work Utilitarian Trips (BNWT): BWT * 1.7 = BNWT 12 One-Way Trips (Latest planning assumptions estimate non-work utilitarian trips to be 1.7 times the work utilitarian.) 												
				,									
Α.	Step 2: Calculate the VMT Reduction Per Day: A. ((2 * BWT) + (2 * BNWT)) * (0.5* L) = VMTR 39.4 VMTR Per Day												
в.	VMTR * Operating Days	Per Year	39.4 * 200 =	7.872 VMTR P	er Year								
		eled Reduction is known ent	er in the box to the right.										
		the VMTR will override the c	-										
	· · · · · ·	Emission Factors for Unres											
	•	default if average speed is n		Used: 35 MPH	Eastern								
	2020 Passenger	2020 Passenger	2020 Passenger	2020 Passenger									
	Summer VOC Factor	Summer NOx Factor	Summer CO Factor	Summer CO2 Factor									
	grams/mile	grams/mile	grams/mile	grams/mile									
	0.030	0.081	2.095	338.769									

Georgetown - Boxford Border-to-Boston Trail

CMAQ Air Quality Worksheet (Cont.)

Georgetown - Boxford Border-to-Boston Trail

Summer VOC	Summ	er NOx	Summer C	Seasonally Adj ⊖	Summer CO2						
				ĭ							
0.2		.7	16.8	J	2,666.9						
Step 5: Calculate cost effectiveness (first year cost per kg of emissions reduced)											
	Project	Emissi	on Reduction	First year cost							
Emission	Cost	in kg p	er year	per kilogram							
Summer VOC	\$2,520,436	/	0.2 =	\$10,545,326							
Summer NOx	\$2,520,436	/	0.7 =	\$3,860,574							
Summer CO	\$2,520,436	/ 1	6.8 =	\$150,023							
Summer CO2	\$2,520,436	/ 2,66	6.9 =	\$945							

Spreadsheet Template Prepared by Office of Transportation Planning

If VMT reduction per year is known then go to Step 2B, if no

A. Facility Length (L): Service Area Radius (R): В.

- C. Service Area of Community(ies) (SA): L * 2R = SA
- **D.** Total Land Area of Community(ies) (T):

FILL IN SHADED BOXES ONLY

- Service Area % of Community(ies) Land Area (LA): SA / Ε.
- Total Population of Community(ies) (TP): F.
- Population Served by Facility (P): LA * TP = PG.
- Total Number of Households in Community(ies) (HH): Н.
- Number of Households Served by Facility (HS): LA * HH = Ι.
- Total Number of Workers Residing in Community(ies) (W): J.
- Workers Per household (WPHH): W / HH = WPHH Κ.

Draft FFYs 2021 to 2025 MVMPO TIP Appendix April 2020

- Workers in Service Area (WSA): HS * WPHH = WSA L.
- M. Population Density of the Service area (PD): P / SA = PD

CMAQ Air Quality Worksheet

FILL IN SHAD	DED BOXES ONLY					
TIP YEAR:	2024					
MPO:	Merrimack Valley	N	Aunicipality: G			
Project:	# 607542 Georgetown-Newbu	ry Border to Bos	ston Trail			
Step 1: Calcu	late Estimated Reduction in Veh	icle Miles Travel	ed (VMT):			
If VMT reduction	on per year is known then go to St	ep 2B, if not proce	eed with Step 1	:		
Facility Length	n (L) :		[3.6	Miles	
Service Area F	Radius (R) :		[1.0	Miles	(Default = 1)
Service Area o	of Community(ies) (SA) : L * 2R =	SA		7.2	Sq. Miles	
Total Land Are	ea of Community(ies) (T) :		[36.3	Sq. Miles	
Service Area %	% of Community(ies) Land Area (L	.A) : SA / T = LA		19.8%		
Total Population	on of Community(ies) (TP) :		[15,088	Persons	
Population Se	rved by Facility (P) : LA * TP = P			2,993	Persons	
Total Number	of Households in Community(ies)	(HH):	[5,808	HH	
Number of Ho	useholds Served by Facility (HS):	LA * HH = HS		1,152	HH	
Total Number	of Workers Residing in Community	/(ies) (W) :	[8,055	Persons	
Workers Per h	nousehold (WPHH) : W / HH = WP	НН		1.39	Persons	
Workers in Se	rvice Area (WSA) : HS * WPHH =	WSA		1,598	Persons	
Population De	nsity of the Service area (PD): P /	SA = PD		416 P	ersons Per S	Sq. Mile

Georgetown - Newbury Border to Boston Trail CMAQ Air Quality Analysis Worksheet for Bicycle and Pedestrian Project

2020 Passenger

Summer VOC Factor

grams/mile

0.030

Speed is not known. Speed Used. IVIFIT as a uclauit il avelage

N. If the bicycle and pedestrian commuter mode share is known, enter the percentage at the ri (BMS) 1.5% If not, use US Census - American Community Survey data to determine the mode share and enter the percentage. http://www.census.gov/programs-surveys/acs/guidance/estimates.html

О.	Bike and Ped. Work Utilitarian Trips (BWT): WSA * BMS = BW	Г	24 One-Way Trips	
P.	Bike and Ped. Non-Work Utilitarian Trips (BNWT) : BWT * 1.7 = (Latest planning assumptions estimate non-work utilitarian trips		40 One-Way Trips he work utilitarian.)	
	Step 2: Calculate the VMT Reduction Per Day:			
A.	((2 * BWT) + (2 * BNWT)) * (0.5* L) = VMTR		231.5 VMTR Per Day	
В.	VMTR * Operating Days Per Year 231.5	5 * 200 =	46,290 VMTR Per Year	r
	If the Vehicle Miles Traveled Reduction is known enter in the bo	x to the right.	VMTR Per Year	r
	Note: A manual entry of the VMTR will override the calculated c	ell.		
	Step 3: MOVES 2014a Emission Factors for Unrestricted PM	l:		
	Note: Use 35 MPH as a default if average speed is not known	Speed Used [.]	35 MPH	Faster

2020 Passenger

grams/mile

2.095

2020 Passenger

grams/mile

0.081

Summer NOx Factor Summer CO Factor

Georgetown - Newbury Border to Boston Trail

CMAQ Air Quality Worksheet (Cont.)

2020 Passenger

Summer CO2 Factor

grams/mile

338.769

Step 4: Calculate emissions reductions in kilograms per year (Seasonally Adjusted):											
Summer VOC	Su	mmer N	Ox Summer C	<u>xo</u> s	ummer CO2						
1.4		3.8	98.8		15,681.6						
Step 5: Calculate cost effectiveness (first year cost per kg of emissions reduced)											
•	Project	· ·	Emission Reduction	First year cost	,						
Emission	Cost		in kg per year	per kilogram							
Summer VOC	\$5,685,059	/	1.4 =	\$4,045,217							
Summer NOx	\$5,685,059	/	3.8 =	\$1,480,927							
Summer CO	\$5,685,059	/	98.8 =	\$57,549							
Summer CO2	\$5,685,059	/	15,681.6 =	\$363							

Spreadsheet Template Prepared by Office of Transportation Planning

	Groveland Community Trail Project # 608298 CMAQ Air Quality Worksheet											
	CMAQ Air Qualit	ty Analysis Worksheet fo	or Bicycle and F	Pedestrian Project								
	FILL IN SHADED	BOXES ONLY										
	TIP YEAR:	2022										
	MPO:	Merrimack Valley			Municipality	/:	Groveland					
	Project:	Groveland Community	Trail Project # 6	608298								
	Step 1: Calculate Estimated Reduction in Vehicle Miles Traveled (VMT):											
If VMT reduction per year is known then go to Step 2B, if not proceed with Step 1 :												
A.	Facility Length (L) :			2.2	Miles						
В.	B. Service Area Radius (R): 1.0 Miles											
C.	Service Area of C	Community(ies) (SA) : L *	2R = SA		4.4	Sq. Miles						
D.	Total Land Area	of Community(ies) (T) :			8.9	Sq. Miles						
E.	Service Area % c	of Community(ies) Land A	rea (LA) : SA /	T = LA	49.4%							
F.	Total Population	of Community(ies) (TP):			6,646	Persons						
G.	Population Serve	d by Facility (P) : LA * TP	= P		3,286	Persons						
Н.	Total Number of	Households in Community	(ies) (HH) :		2,385	НН						
I.	Number of House	eholds Served by Facility (HS) : LA * HH =	HS	1,179	НН						
J.	Total Number of	Workers Residing in Com	munity(ies) (W) :		3,405	Persons						
K.	Workers Per hou	sehold (WPHH) : W / HH =	= WPHH		1.43	Persons						
L.	Workers in Servio	ce Area (WSA) : HS * WP	HH = WSA		1,683	Persons						
M	Population Densi	ty of the Service area (PD): P / SA = PD		747 F	Persons Per	Sq. Mile					

Draft FFYs 2021 to 2025 MVMPO TIP Appendix April 2020

Groveland Community Trail Project # 608298 CMAQ Air Quality Worksheet (Cont.)

N. If the bicycle and pedestr	ian commuter mode sha	are is known, enter the per	centage at the righ (BM	S) 0.4%				
If not, use US Census - A http://www.census.gov/pr	•	•	mode share and enter the pe	rcentage.				
O. Bike and Ped. Work Utilit	arian Trips (BWT) : WS	A * BMS = BWT	7 One-Way T	rips				
P. Bike and Ped. Non-Work (Latest planning assumpt		11 One-Way T nes the work utilitarian.)	rips					
Step 2: Calculate the VI		·	,					
A. $((2 * BWT) + (2 * BNWT)) * (0.5* L) = VMTR$ 40.0 VMTR Per Day								
B. VMTR * Operating Days	Per Year	40.0 * 200 =	7,999 VMTR Per	Year				
If the Vehicle Miles Trave	led Reduction is known	enter in the box to the righ	it. VMTR Per	Year				
Note: A manual entry of	he VMTR will override t	he calculated cell.						
Step 3: MOVES 2014a E	mission Factors for U	nrestricted PM:						
Note: Use 35 MPH as a c	lefault if average speed	is not known. Speed L	Jsed: 35 MPH	Eastern				
2020 Passenger	2020 Passenger	2020 Passenger	2020 Passenger					
Summer VOC Factor	Summer NOx Factor	Summer CO Factor	Summer CO2 Factor					
grams/mile 0.030	grams/mile 0.081	grams/mile 2.095	grams/mile 338.769					

CMAQ Air Quality Worksheet (Cont.)

Step 4: Calculate emissions reductions in kilograms per year (Seasonally Adjusted):											
Summer VOC	Summer N		Ox Summer C	<u>o</u>	Summer CO	2					
0.2		0.7	17.1		2,709.9						
Step 5: Calculate cost effectiveness (first year cost per kg of emissions reduced)											
	Project		Emission Reduction	First year cost							
Emission	Cost		in kg per year	per kilogram							
Summer VOC	\$2,064,255	/	0.2 =	\$8,499,667							
Summer NOx	\$2,064,255	/	0.7 =	\$3,111,672							
Summer CO	\$2,064,255	/	17.1 =	\$120,920							
Summer CO2	\$2,064,255	/	2,709.9 =	\$762							

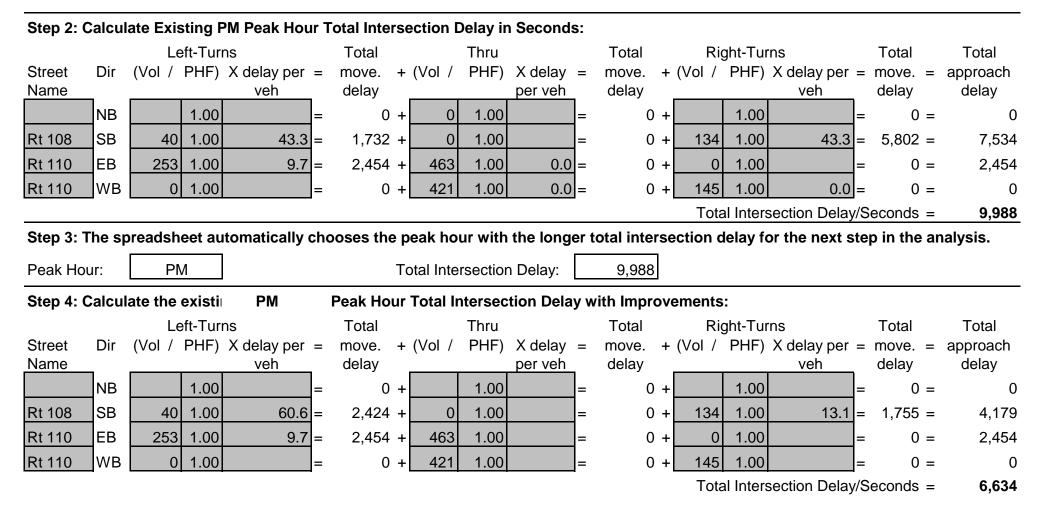
Spreadsheet Template Prepared by Office of Transportation Planning Up

CMAQ Air Quality Analysis Worksheet

CMAQ Air Quality Analysis Worksheet for Traffic Flow and Intersection Improvements

FILL IN SHADED BOXES ONLY

 TIP YEAR
 2021


MPO: Merrimack Valley

Municipality: Haverhill

Project: # 608761 Intersection Reconstruction on Route 108 (Newton Road) at Roiute 110 (Kenoza Av & Amesbury Rd)

Step 1: Calculate Existing AM Peak Hour Total Intersection Delay in Seconds:

-	Left-Turns		Total	Total Thru		Total	8			Tot	al	Total		
Street	Dir	(Vol / PHF)	X delay per =		(Vol /	PHF)	X delay =		· (Vol /	PHF)	X delay per			••
Name	-		veh	delay			per veh	delay			veh	dela	ay	delay
	NB	0 1.00	0.0 =	0 +	350	1.00	0.0 =	0 +	12	1.00	0.0	=	0 =	0
Rt 108	SB	0 1.00	0.0 =	0 +	610	1.00	0.0 =	0 +	114	1.00	0.0	=	0 =	0
Rt 110	EB	0 1.00	0.0 =	0 +	411	1.00	0.0 =	0 +	185	1.00	0.0	=	0 =	0
Rt 110	WB	0 1.00	0.0 =	0 +	458	1.00	0.0 =	0 +	21	1.00	0.0	=	0 =	0
Total Intersection Delay/Seconds =											0			

Step 5: Calculate vehicle delay in h	ours per	day:								
-	(D	elay in seconds	Х	Hours pe	r day)	/	Seconds per hour	=	Delay in h	ours / day
Existing peak hour intersection delay	(9,988	Х	10)	/	3600	=	27.7	
Peak hour intersection delay w/ improvements	(6,634	Х	10)	/	3600	=	18.4	
Step 6: MOVES 2014a emission fac	tors for ic	lling speed:					AM or F	РМ	РМ	
2020	0	2020			202	20	2020			
Summer VO	C Factor	Summer NOx I	Facto	r	Winter CO	D Factor	Summer CO2	Facto	r	
_grams/	nour	grams/hou	ır		grams/	/hour	grams/ho	our		
0.24	9	0.630			3.5	69	3565.61	0		
Step 7: Calculate net emissions ch	ange in ki	lograms per day	:							
Delay	in	Summer VOC Er	nissic	ons Sun	nmer NO	Emission	Winter C s Emission			Summer CO2 Emissions
Hours pe	r Day	kilograms/d	lay		kilogran	ns/day	kilograms/	day	k	ilograms/da
Existing Conditions	27.7	0.007			0.	017	0.0	99		98.929
With Improvements	18.4	0.005			0.	012	0.0	66		65.701
Net Change		-0.002			-0.	006	-0.0	33		-33.228

CMAQ Air Quality Analysis Worksheet (Cont.)

Step 8: Calculate net emis	ssions change ir	n kilograms per	yea	r (seasonally ac	djus	ted)
	Net change	Avg. weekdays		Seasonal adj.		Adj. net change
	per day (kg) X	per year	Х	factor	=	in kg per year
Summer VOC Emissions	-0.002 X	250	Х	1.0188	=	-0.591
Summer NOx Emissions	-0.006 X	250	Х	1.0188	=	-1.494
Winter CO Emissions	-0.033 X	250	Х	0.9812	=	-8.158
Summer CO2 Emissions	-33.228 X	250	Х	1.000		-8,306.881

Calculate cost effectiveness (first year cost per kg of emissions reduced)

	Project	/	Adj. net change =	First year cost	
Emission	Cost	,	in kg per year	per kilogram	
Summer VOC	\$1,980,067	/	-0.591 =	3,352,093	
Summer NOx	\$1,980,067	/	-1.494 =	1,324,943	
Winter CO	\$1,980,067	/	-8.158 =	242,707	
Summer CO2	\$1,980,067	/	-8,306.881 =	238	

Spreadsheet Template Prepared by Office of Transportation Planning Updated March 2016

Lawrence - Intersection Improvements at South Broadway (Rt 28) and Mount Vernon St

CMAQ Air Quality Analysis Worksheet

CMAQ Air Quality Analysis Worksheet for Traffic Flow and Intersection Improvements

FILL IN SHADE	D BO	XES ON	ILY													
TIP YEAR:		2021														
MPO:	Mer	rimack \	/alley							Municipali	ity:	Lawre	nce			
Project:	#609	9251 Inte	ersect	ion Improve	ment	ts at Sout	h Broa	dway (I	Routet 28)	and Mount \	Vernon	St				
Step 1: Calcula	te Ex	isting A	M Pea	k Hour Total	Inte	ersection	Delay i	n Seco	nds:							
		Le	eft-Tur	ns		Total		Thru		Total	Ri	ght-Tur	ns	Total		Total
Street Name	Dir	(Vol /	PHF)	X delay per	= 1	move. +	(Vol /	PHF)	X delay =	= move. +	· (Vol /	PHF)	X delay per :	= move.	=	approach
	_			veh		delay			per veh	delay			veh	delay		delay
S. Broadway	NB	185	0.95	230.1	=	44,809 +	335	0.95	230.1	= 81,141 +	- 0	0.95	230.1	= 0	=	125,949
S. Broadway	SB	0	0.95	15.9	=	0 +	543	0.95	15.9	= 9,088 +	- 42	0.95	15.9	= 703	=	9,791
Mt. Vernon St	EB	87	0.95	26.3	=	2,409 +	0	0.95	26.3	= 0+	- 313	0.95	26.3	= 8,665	=	11,074
McKinley Ave	WВ	5	0.95	15.0	=	79 +	0	0.95	=	= 0+	- 10	0.95	15.0	= 158	=	237
											Tota	al Inters	section Delay/	Seconds	=	147,051

Lawrence - Intersection Improvements at South Broadway (Rt 28) and Mount Vernon St

Step 2: Calcula	ate Ex	isting PM	I Pea	k Hour Total I	ntersection	Delay i	n Seco	nds:						
		Lef	ft-Turi	าร	Total		Thru		Total	F	Right-Tu	rns	Total	Total
Street Name	Dir	(Vol / F	PHF)	X delay per =	move. +	(Vol /	PHF)	X delay =	move.	+ (Vol	/ PHF)	X delay per	= move. =	approach
	-			veh	delay			per veh	delay		_	veh	delay	delay
S. Broadway	NB	213	0.95	235.5 =	= 52,802 +	494	0.95	235.5 =	122,460	+	0 0.95	235.5	= 0 =	175,262
S. Broadway	SB	0	0.95	14.0 =	= 0+	454	0.95	14.0 =	6,691	+ 6	7 0.95	14.0	= 987 =	7,678
Mt. Vernon St	EB	90	0.95	24.4 =	= 2,312 +	0	0.95	24.4 =	0	+ 22	8 0.95	24.4	= 5,856 =	8,168
McKinley Ave	WB	3	0.95	21.1 =	= 67 +	0	0.95	21.1 =	0	+	2 0.95	21.1	= 44 =	111
										Тс	tal Inter	section Delay	//Seconds =	191,218
Step 3: The sp	reads	heet auto	omati	cally chooses	the peak ho	our with	the lo	nger total in	tersectio	n delay	for the	next step in	the analysis	•
Peak Hour:		PM	1		Т	otal Inte	rsectior	n Delay:	191,218]				
Step 4: Calcula	ate the	existing	9	РМ	Peak Hour	Total I	ntersec	tion Delay v	vith Impro	ovemen	ts:			
		Lef	ft-Turi	าร	Total		Thru		Total	F	Right-Tu	rns	Total	Total
Street Name	Dir	(Vol / F	PHF)	X delay per =		(Vol /	PHF)	X delay =	move.	+ (Vol	/ PHF)	X delay per		approach
				veh	delay			per veh	delay	_	_	veh	delay	delay
S. Broadway	NB	213	0.95	15.0 =	= 3,363 +	489	0.95	14.7 =	7,567	+	5 0.95	14.7	= 77 =	11,007
S. Broadway	SB	5	0.95	23.1 =	= 122 +	452	0.95	23.1 =	10,991	+ 6	6 0.95	23.1	= 1,605 =	12,717
Mt. Vernon St	EB	89	0.95	40.6 =	= 3,804 +	1	0.95	40.6 =	43	+ 22	8 0.95	40.6	= 9,744 =	13,590
McKinley Ave	WB	2	0.95	66.1 =	= 139 +	1	0.95	66.1 =	70	+	2 0.95	66.1	= 139 =	348

Lawrence - Intersection Improvements at Sou	ith B	roadway (Rt 28) a	nd N	<u>lount V</u>	ernon (<u>St</u>	CMAC	Air Quality Analys	is W	orksheet (Cont.)
Step 5: Calculate vehicle delay in hours per d	ay:									
	(Delay in seconds	Х	Hours	s per da	ıy)	/	Seconds per hour	=	Delay in hours / day
Existing peak hour intersection delay	(191,218	Х	10))	/	3600	=	531.2
Peak hour intersection delay w/ improvements	(37,663	Х	1())	/	3600	=	104.6
Step 6: MOVES 2014a emission factors for id	ling	speed:						AM or P	М	РМ
2020		2020				202	0	2020		
Summer VOC F	acto	Summer NOx	Facto	or	Wint	ter CO	Factor	Summer CO2	Facto	or
_grams/hour	_	grams/hou	ur		g	rams/l	hour	grams/ho	ur	
0.249		0.630				3.56	9	3565.610)	
Step 7: Calculate net emissions change in kil	ogra	ms per day:								
Delay in		Summer VOC Er	nissi	ons S	Summe	r NOx	Emission	Winter Co s Emission	-	Summer CO2 Emissions
Hours per Da	y	kilograms/c	lay		kile	ogram	s/day	kilograms/o	lay	kilograms/da
Existing Conditions 531.2	2	0.132				0.3	334	1.89	96	1,893.914
With Improvements 104.6	5	0.026				0.0	66	0.37	73	373.027

-0.269

-0.106

Draft FFYs 2021 to 2025 MVMPO TIP Appendix April 2020

Net Change

-1,520.887

-1.522

Step 8: Calcu	late net emissior	ns change in kilog	rams per year	(seas	sonally adjusted)	
•		Net change	Avg. weekday	•	Seasonal adj.	,	Adj. net change
		per day (kg) X	per year	Х	factor	=	in kg per year
Summer VOC	Emissions	-0.106 X	250	Х	1.0188	=	-27.037
Summer NOx	Emissions	-0.269 X	250	Х	1.0188	=	-68.404
Winter CO Em	issions	-1.522 X	250	Х	0.9812	=	-373.419
Summer CO2	Emissions	-1,520.887 X	250	Х	1.000		-380,221.742
Calculate cos	t effectiveness (f	first year cost per	kg of emissior	ns rec	duced)		
	Project	, Adj. n	et change _		First year cost		
Emission	Cost	, in ke	g per year		per kilogram		
Summer VOC	\$1,013,739	/	-27.037 =		37,494		

Summer NOx	\$1,013,739	/	-68.404 =	14,820	
Winter CO	\$1,013,739	/	-373.419 =	2,715	5
Summer CO2	\$1,013,739	/	-380,221.742 =	3	3

Spreadsheet Template Prepared by Office of Transportation Planning

Lawrence - Intersection Improvements at Merrimack St and South Broadway (Rt 28)

CMAQ Air Quality Analysis Worksheet

CMAQ Air Quality Analysis Worksheet for Traffic Flow and Intersection Improvements

FILL IN SHADE	D BO	XES ON	ILY												
TIP YEAR:		2022													
MPO:	Merr	rimack \	/alley							Municipalit	y:	Lawre	nce		
Project:	# 60	9509 Int	ersec	tion Improve	emer	nts at Merr	imack	Street	and South	Broadway (F	Route 2	8)			
Step 1: Calcula	ite Exi	isting A	M Pea	k Hour Total	Inte	ersection I	Delay ii	n Seco	nds:						
		Le	eft-Tur	ns		Total		Thru		Total	Ri	ght-Tur	ns	Total	Total
Street Name	Dir	(Vol /	PHF)	X delay per	=	move. +	(Vol /	PHF)	X delay =	= move. +	(Vol /	PHF)	X delay per =	move. =	approach
	_			veh		delay			per veh	delay			veh	delay	delay
S. Broadway	NB	0	0.95	21.8	=	0 +	596	0.95	21.8 =	= 13,677 +	101	0.95	21.8 =	= 2,318 =	15,994
Broadway	SB	163	0.95	47.3	=	8,116 +	741	0.95	27.2 =	= 21,216 +	1	0.95	27.2 =	= 29 =	29,360
Wolcott Ave	EB	1	0.95	11.5	=	12 +	0	0.95	11.5 =	= 0+	0	0.95	11.5 =	= 0 =	12
Merrimack St	WB	245	0.95	18.9	=	4,874 +	0	0.95	18.9 =	= 0 +	134	0.95	18.9 =	= 2,666 =	7,540
											Tota	al Inters	section Delay/	Seconds =	52,907

Lawrence - Intersection Improvements at Merrimack St and South Broadway (Rt 28)

Step 2: Calcula	ate Ex	isting PM	l Peal	k Hour Total In	tersection [Delay ir	n Secol	nds:								
		Left	t-Turn	IS	Total		Thru		Total		Rig	ht-Tur	ns		Total	Total
Street Name	Dir	(Vol / F	PHF)	X delay per =		(Vol /	PHF)	X delay =	move.	+ (V	'ol /	PHF)	X delay per	=	move. =	approach
				veh	delay			per veh	delay				veh	1	delay	delay
S. Broadway	NB	0	0.95	24.7 =	0 +	616	0.95	24.7 =	16,016	+	100	0.95	24.7	=	2,600 =	18,616
Broadway	SB	187	0.95	91.4 =	17,991 +	682	0.95	23.8 =	17,086	+	2	0.95	23.8	=	50 =	35,127
Wolcott Ave	EB	6	0.95	11.6 =	73 +	2	0.95	11.6 =	24	+	2	0.95	11.6	=	24 =	122
Merrimack St	WB	168	0.95	20.4 =	3,608 +	1	0.95	20.4 =	21	+	249	0.95	20.4	=	5,347 =	8,976
											Tota	I Inters	section Delay	//Se	econds =	62,841
Step 3: The sp	reads	heet auto	matio	cally chooses t	he peak ho	ur with	the lo	nger total in	tersectio	n del	ay fo	r the r	next step in	the	analysis	
Peak Hour:		PM			То	tal Inte	rsectior	n Delay:	62,841							
Peak Hour: Step 4: Calcula	ate the			РМ				Delay:	•		ents:	:				
	ate the	existing							•			: jht-Tur	ns		Total	Total
	ate the Dir	e existing	t-Turn	is X delay per =	Peak Hour ⁻ Total move. +		ntersec	tion Delay w	vith Impr Total move.	ovem	Rig	ght-Tur	X delay per	=	move. =	approach
Step 4: Calcula		e existing	t-Turn	IS	Peak Hour ⁻ Total	Total Ir	ntersec Thru	tion Delay w	vith Impr Total	ovem	Rig	ght-Tur		=		
Step 4: Calcula		e existing Left (Vol / F	t-Turn	is X delay per =	Peak Hour ⁻ Total move. +	Total Ir	ntersec Thru PHF)	tion Delay w	vith Impr Total move.	 ovem + (∨	Rig	ght-Tur	X delay per veh	1	move. =	approach
Step 4: Calcula	Dir	e existing Left (Vol / F	t-Turn PHF) 0.95	ns X delay per = veh	Peak Hour ⁻ Total move. + delay	Total Ir (Vol / 616	ntersec Thru PHF)	tion Delay w X delay = per veh	vith Impr Total move. delay	 ovem + (∨ +	Rig 'ol /	ht-Tur PHF)	X delay per veh 4.9	=	move. = delay	approach delay
Step 4: Calcula Street Name S. Broadway	Dir	e existing Left (Vol / F	t-Turn PHF) 0.95	x delay per = veh 22.5 =	Peak Hour ⁻ Total move. + delay 0 +	Total Ir (Vol / 616	ntersec Thru PHF) 0.95	tion Delay w X delay = per veh 22.5 =	vith Impr Total move. delay 14,589	ovem + (V +	Rig 'ol / 100	ht-Tur PHF) 0.95	X delay per veh 4.9 14.0	=	move. = delay 516 =	approach delay 15,105
Step 4: Calcula Street Name S. Broadway Broadway	Dir NB SB	e existing Left (Vol / F	t-Turn PHF) 0.95 0.95	ns X delay per = veh 22.5 = 14.6 =	Peak Hour Total move. + delay 0 + 2,874 +	Total Ir (Vol / 616	ntersec Thru PHF) 0.95 0.95	tion Delay w X delay = per veh 22.5 = 14.0 =	vith Impr Total move. delay 14,589 10,051 106	ovem + (V +	Rig 'ol / 100 2	ht-Tur PHF) 0.95 0.95	X delay per veh 4.9 14.0 50.5	= =	move. = delay 516 = 29 =	approach delay 15,105 12,954

Lawrence - Intersection Improvements at Me	rrima	ack St and South I	Broad	lway (Rt	28)	<u>CM</u>	AQ Air Quality Analy	sis W	orksheet (Cont.)	
Step 5: Calculate vehicle delay in hours per o	lay:									
	(Delay in seconds	Х	Hours	per day)	/	Seconds per hour	=	Delay in hours / d	ay
Existing peak hour intersection delay	(62,841	Х	10)	/	3600	=	174.6	
Peak hour intersection delay w/ improvements	(41,691	Х	10)	/	3600	=	115.8	
Step 6: MOVES 2014a emission factors for ic	ling	speed:					AM or F	РМ	РМ	
2020		2020				2020	2020			
Summer VOC F	actor	Summer NOx	Facto	r	Winter	CO Factor	Summer CO2	Facto	or	
grams/hou	r	grams/hou	ur		gra	ms/hour	grams/ho	bur		
0.249		0.630				3.569	3565.61	0		
Step 7: Calculate net emissions change in ki	logra	ims per day:								
Delay in		Summer VOC Er	missio	ons Si	ummer N	NOx Emissi	Winter C ons Emissior		Summ CO2 Emissio	
Hours per Da	ay	kilograms/c	day		kilog	rams/day	kilograms/	day	kilograms	s/day
Existing Conditions 174.	6	0.043				0.110	0.6	23	622.4	412
With Improvements 115.	8	0.029				0.073	0.4	13	412.9	924
Net Change		-0.015				-0.037	-0.2	10	-209.4	488

Step 8: Calcula	te net emissio	ns change in kilogr	ams per year	(seaso	onally adjusted)	
		Net change	Avg. weekday	/S	Seasonal adj.	Adj. net change
		per day (kg) X	per year	Х	factor =	in kg per year
Summer VOC E	missions	-0.015 X	250	Х	1.0188 =	-3.724
Summer NOx E	missions	-0.037 X	250	Х	1.0188 =	-9.422
Winter CO Emis	ssions	-0.210 X	250	Х	0.9812 =	-51.435
Summer CO2 E	missions	-209.488 X	250	Х	1.000	-52,371.982
Calculate cost	effectiveness (first year cost per l	kg of emissio	ns red	uced)	
	Project	/ Adj. ne	et change =		First year cost	
Emission	Cost	in kg	j per year		per kilogram	
Summer VOC	\$1,610,960	/	-3.724 =		432,573	
Summer NOx	\$1,610,960	/	-9.422 =		170,978	
Winter CO	\$1,610,960	/	-51.435 =		31,320	
Summer CO2	\$1,610,960	/ -52	2,371.982 =		31	

Spreadsheet Template Prepared by Office of Transportation Planning

Lawrence Manchester Rail Corridor Rail Trail CMAQ Air Quality Worksheet

CMAQ Air Quality Analysis Worksheet for Bicycle and Pedestrian Project

FILL IN SHADED BOXES ONLY

	TIP YEAR:	2023				
	MPO:	Merrimack Valley	Municipality	:	Lawrence	
	Project: Lawrence Manchester Rail Corridor (LMRC) Rail Trail Project # 608930				<u> </u>	
	Step 1: Calculate Estimated Reduction in Vehicle Miles Traveled (VMT):					
	If VMT reduction per year is known then go to Step 2B, if not proceed with Step 1 :					
Α.	A. Facility Length (L):			Miles		
В.	Service Area Rad	dius (R) :	1.0	Miles	(Default = 1)	
C.	C. Service Area of Community(ies) (SA) : L * 2R = SA			Sq. Miles		
D. Total Land Area of Community(ies) (T) :			6.93	Sq. Miles		
E.	E. Service Area % of Community(ies) Land Area (LA): SA / T = LA					
F.	Total Population	of Community(ies) (TP) :	79,337	Persons		
G.	G. Population Served by Facility (P) : LA * TP = P		33,429	Persons		
H.	Total Number of	Households in Community(ies) (HH) :	25,759	HH		
I.	Number of House	eholds Served by Facility (HS) : LA * HH = HS	10,854	HH		
J.	J. Total Number of Workers Residing in Community(ies) (W):			Persons		
K.	Workers Per hou	isehold (WPHH) : W / HH = WPHH	1.29	Persons		
L.	Workers in Servie	ce Area (WSA) : HS * WPHH = WSA	14,015	Persons		
M	I. Population Density of the Service area (PD): P / SA = PD			11,448 Persons Per Sq. Mile		

Lawrence Manchester Rail Corridor Rail Trail CMAQ Air Quality Worksheet (Cont.)

N. If the bicycle	and pedestria	n commuter mode sha	are is known, enter th	e percentage	e at the right	(BMS)	4.7%
		erican Community Su grams-surveys/acs/gui			share and enter	r the percen	itage.
O. Bike and Pe	d. Work Utilitar	ian Trips (BWT) : WS	A * BMS = BWT		659 On	e-Way Trips	3
P. Bike and Pe	d. Non-Work U	tilitarian Trips (BNWT) : BWT * 1.7 = BNW	Τ	1,120 On	e-Way Trips	6
(Latest plan	ning assumptio	ns estimate non-work	utilitarian trips to be	1.7 times the	work utilitarian.	.)	
Step 2: Cal	culate the VM7	Reduction Per Day:					
A. ((2 * BWT) ·	+ (2 * BNWT)) *	(0.5* L) = VMTR			2596.6 VM	TR Per Day	/
B. VMTR * Op	erating Days P€	er Year	2,596.6 * 20	= 00	<u>519,313</u> VM	TR Per Yea	ar
If the Vehicl	e Miles Travele	d Reduction is known	enter in the box to th	ne right.	VM	TR Per Yea	ar
Note: A ma	nual entry of the	e VMTR will override t	he calculated cell.				
Step 3: MO	VES 2014a Em	ission Factors for U	nrestricted PM:			_	
Note: Use 3	5 MPH as a de	fault if average speed	is not known. Sp	eed Used:	35 MPH		Eastern
2020 Passe	enger	2020 Passenger	2020 Passenger	20	20 Passenger		
Summer VOC	Factor	Summer NOx Factor	Summer CO Factor	Sum	mer CO2 Facto	r	
grams/m 0.030	ile	grams/mile 0.081	grams/mile 2.095	[grams/mile 338.769		

CMAQ Air Quality Worksheet (Cont.)

Step 4: Calculate	Step 4: Calculate emissions reductions in kilograms per year (Seasonally Adjusted):											
Summer VOC	Su	mmer N	IOx Summer C	<u>;0</u>	Summer CO2							
15.8		43.1	1,108.2		175,927.3							
Step 5: Calculate	e cost effectiver	ness (fi	rst year cost per kg o	f emissions rec	luced)							
	Project		Emission Reduction	First year cost								
Emission	Cost		in kg per year	per kilogram								
Summer VOC	\$16,087,005	/	15.8 =	\$1,020,330								
Summer NOx	\$16,087,005	/	43.1 =	\$373,536								
Summer CO	\$16,087,005	/	1,108.2 =	\$14,516								
Summer CO2	\$16,087,005	/	175,927.3 =	\$91								

Spreadsheet Template Prepared by Office of Transportation Planning Updated March 2016

CMAQ Air Quality Analysis Worksheet

CMAQ Air Quality Analysis Worksheet for Traffic Flow and Intersection Improvements															
FILL IN SHAD	DED E	BOXES	ONLY												
TIP YEAR:		2022													
MPO:	Merr	imack V	/alley						Muni	icipalit	y:	Methu	en		
Project:	# 61	0658 Int	ersec	tion Improve	ments at R	versid	le Drive a	nd Burnha	am Road	d					
Step 1: Calculate Existing AM Peak Hour Total Intersection Delay in Seconds:															
		Le	ft-Turi	ns	Total		Thru		Tot	tal	Rię	ght-Tur	ns	Total	Total
Street Name	Dir	(Vol /	PHF)	X delay per	= move.	+ (Vol	I / PHF)	X delay	= mo\	/e. +	(Vol /	PHF)	X delay per =	move. =	approach
	-			veh	delay			per veh	dela	ay			veh	delay	delay
Driveway	NB	2	0.95	16.8	= 35	; +	2 0.95	16.8	=	35 +	9	0.95	16.8 =	159 =	230
Burnham Rd	SB	60	0.95	36.3	= 2,293	; +	10 0.95	36.3	=	382 +	63	0.95	36.3 =	2,407 =	5,082
Riverside Dr	EB	50	0.95	2.1	= 111	+ 2	50 0.95	2.1	=	553 +	2	0.95	2.1 =	4 =	668
Riverside Dr	WВ	5	0.95	0.2	= 1	+ 2	90 0.95	0.2	=	61 +	80	0.95	0.2 =	17 =	79
											Тс	otal Inte	ersection Delay	/Seconds =	6,058

CMAQ Air Quality Analysis Worksheet (Cont.)

Step 2: Calculate Existing PM Peak Hour Total Intersection Delay in Seconds:													
		Left-Turn	S	Total		Thru		Total	Rig	ght-Tur	ns	Total	Total
Street Name	Dir	(Vol / PHF)	X delay per =	move. +	(Vol /	PHF)	X delay =	move. +	- (Vol /	PHF)	X delay per =	move. =	approach
	ı		veh	delay			per veh	delay			veh	delay	delay
Driveway	NB	1 0.95	23.4 =	25 +	10	0.95	23.4 =	246 +	- 12	0.95	23.4 =	296 =	567
Burnham Rd	SB	182 0.95	524.3 =	100,445 +	12	0.95	524.3 =	6,623 +	- 76	0.95	524.3 =	41,944 =	149,012
Riverside Dr	EB	80 0.95	2.9 =	244 +	315	0.95	2.9 =	962 +	- 4	0.95	2.9 =	12 =	1,218
Riverside Dr	WB	16 0.95	0.5 =	8 +	395	0.95	0.5 =	208 +	127	0.95	0.5 =	67 =	283
									Тс	otal Inte	ersection Delay/	'Seconds =	151,079
Step 3: The s	pread	dsheet automa	tically choose	es the peak	hour w	ith the	longer total	intersection	on delay	/ for th	e next step in	the analysi	S.
Peak Hour:		PM		Т	otal Inte	rsectio	n Delay:	151,079					
Peak Hour: Step 4: Calcu	late t	<u></u>	PM				n Delay:	<i>,</i>	/ements	:			
	late t	<u></u>					<u> </u>	<i>,</i>		: ght-Tur	ns	Total	Total
Step 4: Calcu	late t Dir	the existing Left-Turn		Peak Hour Total		ntersec	<u> </u>	vith Improv Total		ght-Tur	ns X delay per =	Total move. =	· · · ·
Step 4: Calcu		the existing Left-Turn	S	Peak Hour Total	Total Ir	ntersec Thru	tion Delay w	vith Improv Total	Ri	ght-Tur			
Step 4: Calcu Street Name		the existing Left-Turn	s X delay per =	Peak Hour Total move. +	Total Ir (Vol /	ntersec Thru	tion Delay w	vith Improv Total move. +	Riq - (Vol /	ght-Tur	X delay per =	move. =	approach delay
Step 4: Calcu Street Name Driveway	Dir	the existing Left-Turn (Vol / PHF)	s X delay per = veh	Peak Hour Total move. + delay	Total Ir (Vol /	ntersec Thru PHF)	tion Delay w X delay = per veh	vith Improv Total move. + delay	Rio - (Vol / - <u>12</u>	ght-Tur PHF) 0.95	X delay per = veh	move. = delay	approach delay 218
Step 4: Calcu Street Name Driveway Burnham Rd	Dir NB	the existing Left-Turn (Vol / PHF)	s X delay per = veh 9.0 =	Peak Hour Total move. + delay 9 +	Total Ir (Vol / 10 12	nterseo Thru PHF) 0.95	tion Delay w X delay = per veh 9.0 = 12.8 =	vith Improv Total move. + delay 95 +	Rig - (Vol / - <u>12</u> - <u>76</u>	ght-Tur PHF) 0.95	X delay per = veh 9.0 =	move. = delay 114 =	approach delay 218 3,638
Step 4: Calcu Street Name Driveway Burnham Rd Riverside Dr	Dir NB SB	the existing Left-Turn (Vol / PHF)	s X delay per = veh 9.0 = 12.8 =	Peak Hour Total move. + delay 9 + 2,452 +	Total Ir (Vol / 10 12 315	ntersec Thru PHF) 0.95 0.95	tion Delay w X delay = per veh 9.0 = 12.8 = 11.7 =	vith Improv Total move. + delay 95 + 162 +	Rių - (Vol / - <u>12</u> - <u>76</u> - <u>4</u>	ght-Tur PHF) 0.95 0.95	X delay per = veh 9.0 = 12.8 =	move. = delay 114 = 1,024 =	approach delay 218 3,638 4,914

Total Intersection Delay/Seconds = **16,302**

CMAQ Air Quality Analysis Worksheet (Cont.)

Step 5: Calculate vehicle	delay in hours per o	day:									
		(Delay ir	n seconds	Х	Hours p	er day)	/	Seconds per hour	=	Delay in	hours / day
Existing peak hour intersect	ion delay	(151,079	Х	10)	/	3600	=	419.	7
Peak hour intersection dela	y w/ improvements	(16,302	Х	10)	/	3600	=	45.	3
Step 6: MOVES 2014a emi	ssion factors for ic	dling spee	d:					AM or F	M	РМ	
	2020		2020			20	20	2020			
	Summer VOC Fac	ctor Su	mmer NOx	Factor		Winter C	O Factor	Summer CO2	Facto	or	
	grams/hour		grams/ho	ur		grams	s/hour	grams/ho	ur		
	0.249		0.630			3.5	569	3565.61	0		
Step 7: Calculate net emis	sions change in ki	ا ilograms	per day:								
	Delay in	Sumi	mer VOC Ei	missio	ns Su	mmer NO	x Emission	Winter C s Emissior			Summer CO2 Emissions
	Hours per Day		kilograms/c	day		kilograi	ms/day	kilograms/	day		kilograms/da
Existing Conditions	419.7		0.104			0	.264	1.4	98		1,496.360
With Improvements	45.3		0.011			0	.029	0.1	62		161.461
			-0.093			-	.236	-1.3	~~		-1,334.900

CMAQ Air Quality Analysis Worksheet (Cont.)

Step 8: Calc	ulate net emissi	ons change in kil	ograms per y	/ear (se	asonally adjuste	ed)	
		Net change	Avg. weekda	ays	Seasonal adj.		Adj. net change
		per day (kg) X	per year	Х	factor	=	in kg per year
Summer VO	C Emissions	-0.093 X	250	Х	1.0188	=	-23.731
Summer NO	x Emissions	-0.236 X	250	Х	1.0188	=	-60.039
Winter CO E	missions	-1.336 X	250	Х	0.9812	=	-327.755
Summer CO	2 Emissions	-1,334.900 X	250	Х	1.000		-333,724.936
Calculate co	st effectiveness	(first year cost p	er kg of emis	sions r	educed)		
	Project	, Adj. n	et change		First year cost		
Emission	Cost	, in k	g per year		per kilogram		
Summer VOC	\$967,200	/	-23.731 =		40,757		
Summer NOx	\$967,200	/	-60.039 =		16,110		
Winter CO	\$967,200	/	-327.755 =		2,951		
Summer	¢067 200	/	2 724 026 -		2		

Spreadsheet Template Prepared by Office of Transportation Planning

-333,724.936 =

Updated March 2016

3

CO2

\$967,200

Merrimack Valley RTA Replace 7 (2009) Buses with 7 (2022) Buses

CMAQ Bus Replacement Air Quality Analysis Worksheet

FILL IN SHADED BO	XES	ONLY				
TIP YEAR		2021	Bus Replace	ements		
МРО	Me	rrimack Val	lley			
RTA	Me	rrimack Val	lley			
Project # S10777 - Fl	ex t	o FTA to Re	place 7 (2009	9) Buses with 7 (2022) Buses	
Emission Rates in gra	ms/r	nile at assur	med operating	speed bin of :	18 MPH (Bin 5	(17.5-22.5))
Scenario Compariso	n		Summer VOC	Summer NOx	Winter CO	Summer CO2
			(grams/mile)	(grams/mile)	(grams/mile)	(grams/mile)
		Model Year	ſ			
Existing Model*	=	2009	0.115	3.750	0.659	1,203.080
New Bus Purchase**	=	2022	0.048	0.764	0.275	1,133.23
* Please contact OTP	for a	assistance o	n Existing Mo	del emission facto	ors	
** MOVES 2014a Cor	nme	rcial Emissic	on Factors - P Restricted or	lease Specify the	Following:	
AM or PM:	PN		Unrestricted	Unrestricted		
Change (Buy-Base)			-0.067	-2.986	-0.384	-69.850
Calculate fleet vehic	le m	iles per day	/:			
Revenue miles	s X	Deadhead	= fleet miles	/ operating days	= fleet miles	
per yea	r	factor	per year	per year	per day	
247,441		1.16	287,032	355	809	

Merrimack Valley RTA Replace 7 (2009) Buses with 7 (2022) Buses (Cont.)

Calculate emissions change in kilograms per summer day

Change	rate change	/ 1000	X fleet miles	X seasonal	= change/day
	grams/mile	g/kg	per day	adj factor	in kg
Change in Summer VOC	-0.067	1,000	809	1.0188	-0.055
Change in Summer NOx	-2.986	1,000	809	1.0188	-2.460
Change in Winter CO	-0.384	1,000	809	0.9812	-0.305
Change in Summer CO2	-69.850	1,000	809	1.0000	-56.476

Calculate emissions change in kilograms per year

Pollutant	= change/day	X op.days	= change per
	in kg	per year	year in kg
Summer VOC	-0.055	355	-19.593
Summer NOx	-2.460	355	-873.189
Winter CO	-0.305	355	-108.148
Summer CO2	-56.476	355	-20049.154

Calculate cost effectiveness (cost per kg of emissions reduced)

Pollutant	Total Project	/ Project Life	/ reduction per	= annual cost
	Cost	in years	year in kg	per kg
Summer VOC	\$3,467,361	12	19.593	\$14,748
Summer NOx	\$3,467,361	12	873.189	\$331
Winter CO	\$3,467,361	12	108.148	\$2,672
Summer CO2	\$3,467,361	12	20049.154	\$14

Template prepared by the Office of Transportation Plannning

Updated March 2016

Merrimack Valley RTA Replace 16 (2015) Vans with 16 (2021) Vans CMAQ Bus Replacement Air Quality Analysis Worksheet

FILL IN SHADED BOXI	ES	ONLY				
TIP YEAR:		2021	Bus Replacer	nents		
MPO: N	Ner	rimack Valle	ey (
RTA: N	Ner	rimack Valle	ey (
Project #RTD0008596	- R	eplace 16 (2	015) Vans wit	h 16 (2021) van	IS	
Emission Rates in gram	ns/m	nile at assum	ed operating s	peed bin of :	18 MPH (Bin 5	(17.5-22.5))
Scenario Comparison			Summer VOC	Summer NOx	Winter CO	Summer CO2
Scenario Comparison			(grams/mile)	(grams/mile)	(grams/mile)	(grams/mile)
		Model Year	(grams/mile)	(grams/mile)	(grams/mile)	(grams/mile)
Existing Model* =		2015	0.008	0.058	2.014	501.185
New Bus Purchase** =		2021	0.003	0.025		435.854
* Please contact OTP for	- -				ļ	
** MOVES 2014a Comr			U U			
	РМ		Restricted or	Unrestricted	Ū	
Change (Buy-Base)			-0.005	-0.033	-1.421	-65.331
Calculate fleet vehicle	mi	les per day:				
Revenue miles	Х	Deadhead	= fleet miles	operating days	= fleet miles	
per year		factor	per year	per year	per day	
457,933		1.11	508,306	355	1,432	

Merrimack Valley RTA Replace 16 (2015) Vans with 16 (2021) Vans (Cont.)

Calculate emissions change in kilograms per summer day

Change	rate change	/ 1000	X fleet miles	X seasonal	= change/day
	grams/mile	g/kg	per day	adj factor	in kg
Change in Summer VOC	-0.005	1,000	1,432	1.0188	-0.007
Change in Summer NOx	-0.033	1,000	1,432	1.0188	-0.048
Change in Winter CO	-1.421	1,000	1,432	0.9812	-1.996
Change in Summer CO2	-65.331	1,000	1,432	1.0000	-93.544

Calculate emissions change in kilograms per year

Pollutant	= change/day	X op.days	/s = change per		
	in kg	per year	year in kg		
Summer VOC	-0.007	355	-2.589		
Summer NOx	-0.048	355	-17.089		
Winter CO	-1.996	355	-708.723		
Summer CO2	-93.544	355	-33208.115		

Calculate cost effectiveness (cost per kg of emissions reduced)

Pollutant	Total Project	/ Project Life	Project Life / reduction per = annual cos			
	Cost	in years	year in kg	per kg		
Summer VOC	\$1,180,480	4	2.589	\$113,976		
Summer NOx	\$1,180,480	4	17.089	\$17,269		
Winter CO	\$1,180,480	4	708.723	\$416		
Summer CO2	\$1,180,480	4	33208.115	\$9		

Template prepared by the Office of Transportation Plannning

Updated March 2016

Merrimack Valley RTA Replace 2 (2009) Buses with 2 (2022) Buses

CMAQ Bus Replacement Air Quality Analysis Worksheet

CIMAQ DUS Replacement All Quality Analysis Worksheet										
FILL IN SHADED BOXES	SONLY									
TIP YEAR:	2021	Bus Replace	ements							
MPO: Me	errimack Val	ley								
RTA: Merrimack Valley										
FTA Sect 5307 Project #	TBD Replac	ce 2 (2009) B	uses with 2 (202	2) Buses						
Emission Rates in grams/	mile at assur	med operating	speed bin of :	18 MPH (Bin 5	(17.5-22.5))					
Scenario Comparison		Summer VOC	Summer NOx	Winter CO	Summer CO2					
		(grams/mile)	(grams/mile)	(grams/mile)	(grams/mile)					
	Model Year	(0)	(grams/mic)	(grams/mic)	(grams/mic)					
Existing Model* =	2009	0.115	3.750	0.659	1,203.080					
New Bus Purchase** =	2003	0.048			1,133.23					
* Please contact OTP for					1,100.20					
** MOVES 2014a Comme		0								
		Restricted or	lease opeony the	r onowing.						
AM or PM: PN	Л	Unrestricted	Unrestricted							
Change (Buy-Base)		-0.067	-2.986	-0.384	-69.850					
Calculate fleet vehicle m	niles per day	/:								
Revenue miles	C Deadhead	= fleet miles	/ operating days	= fleet miles						
per year	factor	per year	per year	per day						
70,698	1.16	82,010	355	231						

FTA Sect 5307 Project # TBD Replace 2 (2009) Buses with 2 (2022) Buses

Calculate emissions change in kilograms per summer day

Change	rate change	/ 1000	X fleet miles	X seasonal	= change/day
	grams/mile	g/kg	per day	adj factor	in kg
Change in Summer VOC	-0.067	1,000	231	1.0188	-0.016
Change in Summer NOx	-2.986	1,000	231	1.0188	-0.703
Change in Winter CO	-0.384	1,000	231	0.9812	-0.087
Change in Summer CO2	-69.850	1,000	231	1.0000	-16.136

Calculate emissions change in kilograms per year

Pollutant	= change/day	X op.days	= change per	
	in kg	per year	year in kg	
Summer VOC	-0.016	355	-5.598	
Summer NOx	-0.703	355	-249.485	
Winter CO	-0.087	355	-30.900	
Summer CO2	-16.136	355	-5728.376	

Calculate cost effectiveness (cost per kg of emissions reduced)

Pollutant	Total Project	/ Project Life	/ reduction per	= annual cost
	Cost	in years	per kg	
Summer VOC	\$990,674	12	5.598	\$14,748
Summer NOx	\$990,674	12	249.485	\$331
Winter CO	\$990,674	12	30.900	\$2,672
Summer CO2	\$990,674	12	5728.376	\$14

Template prepared by the Office of Transportation Plannning

Updated March 2016

Appendix F Completed Highway and Transit Projects GHG Summary

Merrin	Merrimack Valley Region MPO TIP Completed Highway Projects GHG Tracking Summary										
Mass DOT/ Project ID	MassDOT Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO ₂ Im- pact (kg/yr)	GHG Impact Description	Additional Description	Fiscal Year of Contract Award (2015 and forward)				
606503	NEWBURYPORT CLIPPER CITY RAIL TRAIL ALONG THE CITY BRANCH (PHASE II)	\$4,061,158	Quantified	34,996	Quantified Decrease in Emissions from Bicycle and Pedestrian Infra- structure	Advertised 9/19/2015 Notice to Proceed 4/1/2016	2016				
606161	HAVERHILL- IMPROVEMENTS ON MAIN STREET (ROUTE 125)	\$3,635,519	Quantified	16,491	Quantified Decrease in Emissions from Traffic Operational Improve- ment	Advertised 9/17/2016 Notice to Proceed 4/12/2017	2017				
607573	HAVERHILL- RECONSTRUCTION ON ROUTE 97 (BROADWAY), FROM SILVER BIRCH LANE TO RESEARCH DRIVE	\$6,526,912	Quantified	41,800	Quantified Decrease in Emissions from Traffic Operational Improve- ment	Advertised 5/13/2017 Notice to Proceed 2/9/2018					

Merrimack Valley Region MPO TIP Completed Highway Projects GHG Tracking Summary (Cont.)

Mass DOT/ Project ID	MassDOT Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO ₂ Im- pact (kg/yr)	GHG Impact Description	Additional Description	Fiscal Year of Contract Award (2015 and forward)
604585	FLEX TO FTA FOR MVRTA NEW BUS UPGRADE TO CLEANER FUEL BUSES	\$645,840	Quantified	26,343	Quantified Decrease in Emissions from Bus Replacement	Flexed to FTA	2017
605020	SALISBURY- MULTI- USE TRAIL EXTENSION (BORDERS TO BOSTON TRAIL), INCLUDES NEW BRIDGE S-02-004 AND BOARDWALK (S-02- 012) (BYX)	\$5,918,500	Quantified	18,631	Quantified Decrease in Emissions from Bicycle and Pedestrian Infra- structure	Advertised 8/25/2018 Contract Awarded 12/12/18 Notice to Proceed 1/18/19	2018

Merrimack Valley Region MPO TIP Completed Highway Projects GHG Tracking Summary (Cont.)

Mass DOT/ Project ID	MassDOT Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO2 Impact (kg/yr)	GHG Impact Description	Additional Description	Fiscal Year of Contract Award (2015 and forward)
602418	AMESBURY- RECONSTRUCTION OF ELM STREET	\$7,223,053	Quantified	1,336	Quantified Decrease in Emissions from Complete Streets Project	Advertised 7/13/19. Ac'd 2019 and 2020. Total Project Cost = \$11,178,124	
607737	AMESBURY- SALISBURY- TRAIL CONNECTOR @ I-95	\$2,574,805	Quantified	3,972	Quantified Decrease in Emissions from Bicycle and Pedes- trian Infrastructure	Advertised 9/15/2018 Notice to Proceed 4/18/19	

Merrimack Valley Region MPO TIP Completed Highway Projects GHG Tracking Summary (Cont.)

Mass DOT/ Project ID	MassDOT Project Description	Total Pro- grammed Funds	GHG Analysis Type	GHG CO ₂ Impact (kg/yr)	GHG Impact Description	Additional Description	Fiscal Year of Contract Award (2015 and forward)
606159	NORTH ANDOVER- INTERSECTION & SIGNAL IMPROVEMENTS AT ROUTE 125 & MASSACHUSETTS AVENUE	\$5,446,662	Quantified	482,727	Quantified Decrease in Emissions from Traffic Operational Improvement	Advertised 1/12/2019 Notice to Proceed 8/14/19	

Merrim	nack Va	lley Region MPO	TIP Comp	oleted Tra	nsit Proje	ects GHG Trackir	ng Summa	ary
FTA Activity Line Item	Transit Agency	Project Description	Total Cost	GHG Analysis Type	GHG CO2 Impact (kg/yr)	GHG Impact Description	Additional Descrip- tion	Fiscal Year Pro- grammed (2015 and forward)
	MVRTA	Purchase – Re- placement Vans 11 Model Year 2009 Delivery 2015	\$627,000	Quantified	41,814	Quantified Decrease in Emissions from Bus Replacement		2015
111202	MVRTA	Replace 10 of 17 Model Year 2004 Transit Buses with new buses (Delivery 2016)	\$4,200,000	Quantified	12,557	Quantified Decrease in Emissions from Bus Replacement		2015
111215	MVRTA	Replace 5 Model Year 2011 Para- transit Vehicles (De- livery 2016)	\$320,000	Quantified	15,992	Quantified Decrease in Emissions from Bus Replacement		2016

Merrimack Valley Region MPO TIP Completed Transit Projects GHG Tracking Summary (Cont.)

FTA Activity Line Item	Transit Agency	Project Description	Total Cost	GHG Analysis Type	GHG CO2 Impact (kg/yr)	GHG Impact Description	Additional Descrip- tion	Fiscal Year Pro- grammed (2015 and forward)
111202	MVRTA	Replace 7 MY 2004 Transit Buses with new buses	\$2,989,000	Quantified	18,271	Quantified Decrease in Emissions from Bus Replacement		2017
111202	MVRTA	Replace 6 Model Year 2004 Buses (Delivery 2018)	\$2,689,500	Quantified	15,661	Quantified Decrease in Emissions from Bus Replacement		2018
RTD00 07687	MVRTA	Replace 3 Model Yr 2007 buses delivery 2020	\$1,377,150	Quantified	8,166	Quantified Decrease in Emissions from Bus Replacement		2020

Appendix G List of Acronyms

MVN	MVMPO List of Commonly Used Acronyms		
A	AADT	Average Annual Daily Traffic	
	AASHTO	American Association of State Highway Transpor- tation Officials	
	ABP	MassDOT Accelerated Bridge Program	
	AC	Advance Construction	
	ADA	Americans with Disabilities Act (1990)	
	ADT	Average Daily Traffic	
	AQ	Air Quality	
В	B to B	Border to Boston Rail Trail	
С	3C	Continuing, Comprehensive and Coordinated (Transportation Planning)	
	СААА	Clean Air Act Amendments of 1990	
	CFR	Code of Federal Regulations	
	CIP	Capital Investment Plan	
	CLF	Conservation Law Foundation	
	CMAQ	Congestion Mitigation and Air Quality Improve- ment Program	
	CMP	Congestion Management Process	
	CMR	Code of Massachusetts Regulations	
	CNG	Compressed Natural Gas	
	СО	Carbon Monoxide	
	CO ₂	Carbon Dioxide	

MVMPO List of Commonly Used Acronyms (Cont.)			
D	DEP	Department of Environmental Protection	
	DOT	Department of Transportation	
	DPW	Department of Public Works	
E	EB	Eastbound	
	EIR	Environmental Impact Report	
	EIS	Environmental Impact Statement	
	EJ	Environmental Justice	
	ENF	Environmental Notification Form	
	E.O.	Executive Order (of the Governor of the Com- monwealth)	
	EPA	U.S. Environmental Protection Agency	
F	FA	Federal-Aid	
	FAPRO	Federal Aid Program Reimbursement Office	
	FAST Act	Fixing America's Surface Transportation Act legis- lation signed into law December 4, 2015	
	FHWA	Federal Highway Administration	
	FTA	Federal Transit Administration	
	FY	(State) Fiscal Year	
	FFY	Federal Fiscal Year	
G	GANs	Grant Anticipation Notes	
	GHG	Greenhouse Gas	
Н	HPP	USDOT High Priority Project	
	HSIP	Highway Safety Improvement Program	

MVMPO List of Commonly Used Acronyms (Cont.)			
I	IM	Interstate Maintenance	
	ITS	Intelligent Transportation System	
	ISTEA	Intermodal Surface Transportation Efficiency Act of 1991	
L	LEP	Limited English Proficiency	
	LOS	Level of Service	
	LTA	Local Technical Assistance	
М	MAP-21	Moving Ahead for Progress in the 21 st Century legis- lation signed into law July 6, 2012	
	MassDOT	Massachusetts Department of Transportation	
	MCAD	Massachusetts Commission Against Discrimination	
	MEPA	Massachusetts Environmental Policy Act	
	M.G.L.	Massachusetts General Laws	
	MOA	Memorandum of Agreement	
	MOD	Massachusetts Office on Disabilities	
	MOU	Memorandum of Understanding	
	МРО	Metropolitan Planning Organization	
	MVMPO	Merrimack Valley Metropolitan Planning Organiza- tion	
	MVPC	Merrimack Valley Planning Commission	
	MVPGS	Merrimack Valley Priority Growth Strategy	
	MVRTA	Merrimack Valley Regional Transit Authority	

MVMP	/IVMPO List of Commonly Used Acronyms (Cont.)			
N	NAAQS	National Ambient Air Quality Standards		
	NARC	National Association of Regional Councils		
	NB	Northbound		
	NEPA	National Environmental Policy Act		
	NFA	Non-Federal Aid		
	NHS	National Highway System		
	NMCOG	Northern Middlesex Council of Governments		
	NOx	Nitrogen Oxide		
	NPRM	Notice of Proposed Rulemaking (Federal Register)		
	O&M	Operations and Maintenance		
	OTP	MassDOT Office of Transportation Planning		
Р	PCI	Pavement Condition Index		
	PDA	Priority Development Area		
	PL	(Metropolitan) Planning Funds		
	PMS	Pavement Management System		
	PPP	Public Participation Plan		
	PRC	(MassDOT) Project Review Committee		
	PSAC	Project Selection Advisory Council		
	PS&E	The Plans, Specifications and Estimate to be used by contractors to bid on construction proposals		

MVN	VMPO List of Commonly Used Acronyms (Cont.)			
R	RGGI	Regional Greenhouse Gas Initiative		
	ROW	Right-of-Way		
	RPA	Regional Planning Agency		
	RPMS	Regional Pavement Management System		
	RTA	Regional Transit Authority		
	RTP	Regional Transportation Plan		
S	SAFETEA-LU	Safe, Accountable, Flexible, Efficient Transporta- tion Equity Act: A Legacy for Users		
	SB	Southbound		
	SD	Structurally Deficient		
	SGR	State of Good Repair		
	SIP	State (Air Quality) Implementation Plan		
	SOV	Single Occupancy Vehicle		
	SPR	Statewide Planning and Research Funds		
	STBG	Surface Transportation Block Grant Program		
	STIP	Statewide Transportation Improvement Program		
	STP	Surface Transportation Program		
Т	ТА	Transportation Alternatives		
	ТАМ	Transit Asset Management		
	ТАР	Transportation Alternatives Program		
	TCSP	Transportation and Community System Preserva- tion Grant Program		
	TDM	Transportation Demand Management		

MVMP	MVMPO List of Commonly Used Acronyms (Cont.)				
T (Con.)	TEA-21	Transportation Equity Act for the 21 st Century			
	TEC	Transportation Project Evaluation Criteria			
	TERM score	Transit Economic Requirements Model score used to rate transit facility conditions			
	TIP	Transportation Improvement Program			
	ТМА	Transportation Management Area			
	ТМС	Turning Movement Count			
	TOD	Transit-Oriented Development			
	TRB	Transportation Research Board			
U	ULB	Useful Life Benchmark			
	UPWP	Unified Planning Work Program			
	USDOT	U.S. Department of Transportation			
V	V/C	Volume/Capacity Ratio			
	VMT	Vehicle Miles Traveled			
	VOC	Volatile Organic Compound			
W	WB	Westbound			

Massac	Massachusetts Executive Orders		
EO	526	Nondiscrimination, Diversity, Equal Employment	
		Opportunity and Affirmative Action	
EO	12898	Environmental Justice in Minority and Low-Income	
		Populations, February 1994	
EO	13166	Improving Access to Programs (and Services) for	
		persons with limited English Proficiency	

Map Number	Project Number	City/Town	Project Description
1	606522	Andover	Andover- Bridge Rehabilitation, A-09-036, I-495 over St 28 (SB), A-09-037, I-495 over B&M and MBTA, A-09-041, I-495 over St 28 (NB)
2	607541	Georgetown- Boxford	Georgetown – Boxford Border to Boston Trail from Georgetown Road to West Main Street (Route 97)
2	607542	Georgetown- Newbury	Georgetown– Newbury Border to Boston Trail (Northern Georgetown to Byfield Section)
<u>3</u>	608298	Groveland	Groveland- Groveland Community Trail, from Main Street to King Street
<u>4</u>	RTD - 9131	MVRTA	SGR Riverbank Stabilization Construction
<u>4</u>	605306	Haverhill	Haverhill – Bridge Replacement, H-12- 039, I-495 (NB & SB) over Merrimack River
<u>4</u>	609466	Haverhill	Haverhill – Bridge Replacement, H-12-040, I-495 (NB & SB) over Merrimack River
<u>4</u>	605304	Haverhill	Haverhill- Bridge Replacement, H-12-007 & H-12-025, Bridge Street (SR 125) over Merrimack River and the Abandoned B&M RR (Proposed Bikeway)

(Continued)

Map Number	Project Number	City/Town	Project Description
<u>5</u>	608761	Haverhill	Haverhill – Intersection Reconstruction on Route 108 (Newton Road) at Route 110 (Kenoza Avenue and Amesbury Road)
<u>6</u>	608930	Lawrence	Lawrence - Lawrence Manchester Rail Corridor (LMRC) Rail Trail
Z	609251	Lawrence	Lawrence – Intersection Improvements at South Broadway (Route 28) and Mount Vernon Street
Z	609509	Lawrence	Lawrence – Intersection Imporvements at Merrimack Street and South Broadway (Route 28)
<u>8</u>	610658	Methuen	Methuen – Intersection Improvements at Riverside Drive and Burnham Road
<u>9</u>	608494	Newbury / Newburyport / Salisbury	Resurfacing of Route 1
<u>10</u>	610663	Newburyport	Newburyport – Riverfront Clipper City Rail Trail Construction

(Continued)

Map Number	Project Number	City/Town	Project Description
<u>11</u>	608095	North Andover	North Andover- Corridor Improvements on Route 114, between Route 125 (Andover Street) & Stop & Shop driveway
<u>12</u>	609392	Rowley	Rowley – Safety Improvements at Route 1, Central and Glen Streets
<u>13</u>	602202	Salisbury	Salisbury – Reconstruction of Route 1 (Lafayette Road)